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DCT Regularized Extreme Visual Recovery
Yunhe Wang, Chang Xu, Shan You, Chao Xu and Dacheng Tao, Fellow, IEEE

Abstract—Here we study the extreme visual recovery problem,
in which over 90% of pixel values in a given image are
missing. Existing low rank-based algorithms are only effective
for recovering data with at most 90% missing values. Thus,
we exploit visual data’s smoothness property to help solve
this challenging extreme visual recovery problem. Based on
the Discrete Cosine Transform (DCT), we propose a novel
DCT regularizer that involves all pixels and produces smooth
estimations in any view. Our theoretical analysis shows that
the total variation (TV) regularizer, which only achieves local
smoothness, is a special case of the proposed DCT regularizer.
We also develop a new visual recovery algorithm by minimizing
the DCT regularizer and nuclear norm to achieve a more visually
pleasing estimation. Experimental results on a benchmark image
dataset demonstrate that the proposed approach is superior to
state-of-the-art methods in terms of peak signal-to-noise ratio
and structural similarity.

Index Terms—Discrete Cosine Transform, Visual recovery,
DCT regularizer, Low-rank minimization.

I. INTRODUCTION

V ISUAL data can be corrupted due to sensory noise or
interferential outliers during data acquisition. A frac-

tion of image pixels could be missing sometimes, if the
conditions deteriorate further, missing pixels will constantly
increase, e.g., terribly-damaged images due to unstable on-
line transmission, cameras covered by noises, photographs
overexposed accidently, and outdoor pictures taken behind a
screen window. For satisfactory visual recognition, detection,
and tracking, corrupted visual data must be recovered during
pre-processing [36], [10], [9], [32], [11], [39].

There has recently been a surge in low rank-based ma-
trix completion methods for visual recovery. Given a matrix
X ∈ RN×M , where N and M are the width and height of
X , respectively, Xi,j = 0, (i, j) /∈ Ω denote the observed data
while the others represent missing data. In general, a low rank
matrix X̂ can be discovered to approximately represent matrix
X . The rank of X̂ is usually assumed to be lower than any of
its two dimensionalities, i.e., rank(X̂) � min(N,M) [17],
[31], [34]. While, for a corrupted observation, the inside
conjunct information would be damaged, means that its last
several singular values must be larger than that of the original
image. Thus minimizing the rank of an observation can
effectively estimate a natural image.
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Fig. 1: A schematic of the calculation of the proposed DCT
regularizer at two scales. The input image is first densely
divided into several pi × pi patches that are then converted
to the frequency domain. The DCT regularizer is returned
by accumulating squared values of high-frequency coefficients
whose positions are larger than qi in all the patches.

Although rank minimization provides an approach for re-
covering the missing observations, it is computationally in-
tractable (NP-hard and non-convex). Under broad conditions,
[10] reported that the rank function minimization can be
replaced by the trace norm ||X||∗ =

∑
k σk (X) minimization,

where σk is the k-th maximum singular value of X . Soft-
thresholding methods [9], [27] are often employed to solve
optimization problems with this trace norm regularization.
However, trace norms have been improved to better investigate
the low rank constraint. For example, [26] designed a truncated
nuclear norm more suitable for matrix completion and [23]
proposed a weighted nuclear norm minimization for image
denoising.

Existing rank minimizing techniques are effective and have
delivered promising performance in many visual recovery
problems. However, most of these algorithms have only been
evaluated for data with at most 80% missing values [32].
Largest singular values usually contain the major structure
and texture of the input image, thus rank minimization will
maintain the noise or damaged pixels when the observation is
terribly corrupted. Therefore, conventional low-rank schemes
may be not applicable to data with extremely high numbers
of missing values (e.g., 95%) that occur when data collection
devices fail or there is damage to the transmission medium.
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This extreme visual recovery problem with a very large
number of missing pixel values is very challenging due to
the conflict between the small amount of observed data and
the tremendous amount of data that needs to be recovered.

As well as the low rank assumption, smoothness is another
important property carried by visual data since there are many
continuous areas and structures in a natural image [37], [16].
The total variation (TV) regularizer [38], [1], [2] is an effective
way to exploit smoothness by calculating the differences
between neighboring pixels and has been widely used in
image processing. However, minimizing local differences via
the TV regularizer risks over-smoothing the image detail and
texture [8], [5]. Additionally, minimizing the TV regularizer
can only make any small patch in the estimated image smooth
but neglect the global perception and structure.

We consider employing the Discrete Cosine Transform
(DCT [3]) to devise a new smoothness regularizer called
the “DCT regularizer”. By constraining the high frequency
coefficients of the data obtained via DCT, the DCT regular-
izer flexibly adjusts the degree of smoothness over the data
(Fig. 1). Actually, the DCT regularizer embedded into the
entire frequency domain of an image only can make this image
smooth integrally. In order to investigate the local smoothness
and multi-scale properties of visual data, we extend the DCT
regularizer to derive local and multi-scale versions, respec-
tively. Our theoretical analysis shows that the DCT regularizer
includes the TV regularizer as a special case. By combining
the classical rank minimization principle with the proposed
DCT regularizer minimization (DRM), the resulting model can
simultaneously exploit the low rank and smoothness properties
of visual data for extreme visual recovery. Experimental results
on real-world datasets demonstrate that the proposed DCT
regularizer is highly effective and that the low rank and
smoothness issues need to be integrated for successful extreme
visual recovery.

This paper is organized as follows. Section II investigates
related works. Section III and Section IV propose the DCT
regularizer and combines it with the nuclear norm to formulate
a novel visual recovery. Section V describes the results of our
experimental validation. Section VI concludes the paper.

II. RELATED WORKS

We first briefly introduce related works on visual completion
based on the conventional nuclear norm and TV regularizer
minimization.

Since an image can be seen as a continuous integration,
whose main structure and texture are held by the first several
largest singular values. Given a corrupted observation Y ,
nuclear norm minimization-based matrix completion [10] is
formulated as

X̂ = arg min
X
||X||∗, s.t. XΩ = YΩ, (1)

where X is the estimated image, ||X||∗ denotes the sum of all
the singular values of X and X̂ is the optimal estimation of
the corrupted observation Y . Since useless information in Y
is commonly contained by singular values whose values are
relatively small, minimize the above function can effectively

eliminate the noise and completely corrupted observations.
Fcn. 1 is often solved by the classical soft-thresholding
method.

However, shrinkage all singular values simultaneously is not
perfect in any case. Thus, [26] proposed the truncated nuclear
norm which maintains the first r largest singular values. The
truncated nuclear norm minimization problem is defined as:

X̂ = arg min
X
||X||r, s.t. XΩ = YΩ, (2)

where ||X||r =
∑min(n,m)

i=r+1 σi(X) is the sum of min(n,m)−r
minimum singular values.

Additionally, the low-rank assumption is not sufficient when
the observed image has been damaged terribly. Thus we should
introduce more prior knowledge as regularizations. Another
effective tool for image recovery is the TV regularizer [38],
which is widely known that it is an efficient smoothness
regularization which accumulates all the gradients of a given
image X:

||X||TV =
∑
i,j

√
|Xi+1,j −Xi,j |2 + |Xi,j+1 −Xi,j |2, (3)

where i and j denote the vertical and horizontal positions of
X , respectively. Since the TV regularizer accumulates gradient
modules of the entire image, minimizing the TV regularizer
can result in a smooth estimation:

X̂ = arg min
X
||X||TV , s.t. XΩ = YΩ. (4)

Since both TV regularizer and nuclear norm have their own
advantages the TV regularizer provides the local smoothness
and the nuclear norm can maintain the overall structure.
Thus [21] proposed to simultaneously use the TV regularizer
and nuclear norm for image recovery:

X̂ = arg min
X
||X||∗ + λ||X||TV , s.t. XΩ = YΩ, (5)

where λ balances the two norms. To the best of our knowledge,
Fcn. 5 is the first algorithm to integrate smoothness and nuclear
norm regularization.

Since the || · ||TV is isotropic, [29] proposed an anisotropic
version:

||X||anisoTV =
∑
i,j

|Xi+1,j −Xi,j |+ |Xi,j+1 −Xi,j |. (6)

However, gradients of the original TV regularizer and the
anisotropic TV regularizer are complex which makes the
problem hard to analyze and optimize. Thus in [25], a modified
linear total variation was defined as:

||X||LTV =
∑
i,j

|Xi+1,j −Xi,j |2 + |Xi,j+1 −Xi,j |2. (7)

It is obvious that the above modified TV regularizer is linear
thus it can be easily solved by some traditional gradient based
approach, which leads to a smooth low-rank matrix completion
problem:

X̂ = arg min
X
||X||∗ + λ||X||LTV , s.t. XΩ = YΩ. (8)

An ADMM-like optimization scheme [6] can be adopted to
solve Fcn. 8. Actually, the introduction of the conventional
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TV regularizer minimization in Fcn. 5 and Fcn. 8 can be
seen as a supplement of the low-rank completion scheme,
which makes the nuclear norm more comprehensive. However,
all types of traditional TV regularizers are calculated by
accumulating neighboring pixels, which neglect the internal
relationship between any two pixels in an image. Additionally,
the traditional TV regularizer only can guarantee an estimation
presenting a locally smooth visualization, when in reality a
natural image should be smoothed at every scale. Since any
component in the frequency domain is calculated by weighted
summarizing all pixels of the original image, thus a process
in the frequency domain will involve all pixel values. In the
next section, we propose a multi-scale DCT regularizer in the
frequency domain.

III. THE DCT REGULARIZER

Generally, most regions in a natural image are smooth
and conjunct in the spatial domain. When we transfer the
image into the frequency domain, there is less high-frequency
information than low-frequency information in the image’s
frequency domain [30]. This section presents a novel Discrete
Cosine Transform (DCT) norm for smoothing the objective
variable, which provides advantages over the TV regularizer
due to its linear and convex properties.

A. The DCT for a 2D image

DCT is widely used in image compression and is an
approximate KL transformation [3], [40], [20], which also
be employed in the filed of visual description [43] and
denoising [44]. For an arbitrary matrix X ∈ RN×M , its DCT
coefficient matrix C is:

Cj1,j2 = αj1αj2

N−1∑
i1=0

M−1∑
i2=0

c(i1, i2, j1, j2)Xi1,i2

= Cj1,j2 ∗X,

(9)

where N and M are height and width of X , respec-
tively. ∗ is the image convolution, and Cj1,j2(i1, i2) =
αj1αj2c(i1, i2, j1, j2) with the same size of X is generated
to calculate the j1, j2-th DCT coefficient of X . αj1 =

√
1/N

if j1 = 0 and αj1 =
√

2/N , otherwise. αj2 =
√

1/M if
j2 = 0 and αj2 =

√
2/M , otherwise. c(·, ·, ·, ·) represents the

cosine basis function:

c(i1, i2, j1, j2) =

cos

(
π(2i1 + 1)j1

2N

)
cos

(
π(2i2 + 1)j2

2M

)
.

(10)

In order to have explicit description and explanation, let
X = vec(X), we can simply reformulate the DCT in matrix
form as C = CX , where C = [vec(C1,1), ..., vec(Cm,n)]
is an orthogonal matrix, i.e., CTC = I. C has the same
dimensionality with X , where C0 is the DC (direct current)
coefficient which only consists of the overall illumination
information [12], the other coefficients in C are AC (alternating
current) components denote the energies of every frequency
level, i.e., the weights of the DCT blocks as showed in
Fig. 1(c). Additionally, it is instructive to note that DCT is

a linear lossless transformation and the original data can be
restored by X = CTC. DCT is also applied to a variety of
computer vision tasks, such as image denoising [15] and image
representation [41], [24].

Since Fcn. 9 involves all elements in X we can access the
overall structural information of the entire matrix, i.e., any
operation in the frequency domain involves all pixels in the
spatial domain. Moreover, the DCT and its gradient can be
quickly calculated using linear transformations such that the
proposed DCT regularizer-based optimization problems can be
efficiently and easily solved.

B. The DCT regularizer for smoothing

The global smooth DCT regularizer. Neighboring pixels
in a natural image are generally significantly correlated. On
the other hand, the abnormal signal (e.g., noise, missing
values) can be seen as a set of external data subject to an
i.i.d. distribution. Hence, the frequency distributions of natural
images and the abnormal signals are distinct (Fig. 1). The
high-frequency information of the original image is much
lower than that of the corrupted observation Y . Based on this
observation, we design a DCT regularizer in the frequency
domain:

||X||qDCT = ||Sq ∗CX||2F , (11)

where ∗ denotes the Hadamard product, || · ||F denotes the
Frobenius norm, and Sq is a selection mask:

Sq =

{
Sij = 0, i ≤ q & j ≤ q
Sij = 1, otherwise. (12)

where q < N is the cut-off position. As is discussed above,
Fcn. 11 aims to remove the abnormal high-frequency informa-
tion thus Sq can be seen as a penalty acting on high-frequency
coefficients.

The smoothing-oriented visual recovery problem by exploit-
ing the proposed DCT regularizer can thus be formulated as:

X̂ = arg min
X
||X||qDCT , s.t. XΩ = YΩ. (13)

Although we can obtain a smooth estimation by solving the
above problem, the optimal solution of Fcn. 13 will have some
deformations as shown in Fig. 2 and Fig. 4. This is due to some
remaining frequency coefficients with positions lower than q
still needing to be refined and they are difficult to estimate.
Obviously, a local smoothness regularization can eliminate
these deformations. Therefore, we expand the global smoothed
DCT regularizer to a more comprehensive model that can also
represent the local smoothness of the given image.
The locally smooth DCT regularizer. Inspired by non-
local denoising methods [8], [23], we divide the corrupted
observation into several small patches. For an N ×M image,
there are n = (N − p + 1) × (M − p + 1) patches with size
p× p. Patches extracted at every pixel are overlapping. Then,
we propose to employ the DCT regularizer to every small
patch to form the locally smooth DCT regularizer:

||X||p,qDCT =

n∑
l=1

||Sp,q ∗Cx(l)
p ||2F

= ||Sp,q ∗CXp||2F ,
(14)
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where p is the scale parameter, e.g., we divide the input
observation into 2 × 2 patches when p = 2. Thus, ||X||p,qDCT

will be equivalent to Fcn. 11 given p = N , Sp,q de-
notes the mask generated according to p, x(l)

p is a p × p
matrix denoting the l-th patch extracted from X , Xp =[
vec(x

(1)
p ), vec(x

(2)
p ), ..., vec(x

(l)
p )
]
∈ Rp2×n stacks x(l)

p into

a matrix, and Sp,q = [vec(Sp,q), ..., vec(Sp,q)] ∈ Rp2×n,
which has the same dimensionality to that of X.

Correspondingly, the resulting optimization function w.r.t.
the local DCT regularizer is:

X̂ = arg min
X
||X||p,qDCT , s.t. XΩ = YΩ. (15)

Since the input image may have different degrees of damage,
we can select the local DCT regularizer and the global
DCT regularizer according to the real demand. Moreover, the
functionality of the proposed local DCT regularizer is similar
to that of the conventional TV regularizer. Both of them are
designed to make local regions in the corrupted observation
smooth. Actually, the TV regularizer is a particular case of the
local DCT regularizer when p = 2 and q = 1, while calculated
in the spatial domain. We will further discuss it in Theorem 1.
The multi-scale DCT regularizer. Both the locally smooth
DCT regularizer and the global smooth DCT regularizer have
pros and cons and can be further refined. Inspired by research
on the local descriptor [33], [13], detecting and describing a
key point based on multiple scales can capture more geometric
information. Similarly, we also can make the estimated image
smooth in different views by combining the proposed local
DCT regularizer and global DCT regularizer. Hence, we
propose integrating local and global smoothness by integrating
DCT regularizers from multiple image scales:

X̂ = arg min
X

s∑
i=1

||X||pi,qi
DCT , s.t. XΩ = YΩ. (16)

where s indicates the number of scales. If s = 1 and p = N ,
Fcn. 16 will focus on global smoothness. Given s = 1 and
p = 2, Fcn. 16 will be reduced to the local DCT regularizer
minimization problem in Fcn. 14. Hence we can design a
multi-scale DCT regularizer with different functionalities by
giving various pi and qi and utilize it to form a visual recovery
problem.

C. Relationship to the TV regularizer

The TV regularizer is an efficient smoothing tool (Fcn. 3).
The following theorem suggests that the TV regularizer can
be regarded as a special case of the local DCT regularizer,
thereby demonstrating the superiority of the proposed DCT
regularizer.

Theorem 1. Given X ∈ RN×M , the optimal solution of Fcn. 4
with the linear TV regularizer is exactly that of the DRM (DCT
regularizer minimization) problem in Fcn. 15 with p = 2 and
q = 1.

Proof. Since both the local DCT regularizer and the linear TV
regularizer can be regarded as aggregations of pixel differences
that are calculated in all 2×2 patches in X . Thus we first take

an arbitrary 2× 2 patch divided from X here as an example,
denote as x = [x0,0, x1,0, x0,1, x1,1]T . The DCT coefficient
matrix of x is C = T (x) and the corresponding local DCT
regularizer with q = 1 is

||x||2,1DCT = C2
0,1 + C2

1,0 + C2
1,1, (17)

where

C0,1 =
1

2
((x0,0 − x0,1) + (x1,0 − x1,1)) ,

C1,0 =
1

2
((x0,0 − x1,0) + (x0,1 − x1,1)) ,

C1,1 =
1

2
((x0,0 + x1,1)− (x0,1 + x1,0)) .

(18)

Since the linear TV regularizer is superior to the conven-
tional TV regularizer [25] and has a more obvious analyz-
ability, thus the discussion here is focusing on the linear TV
regularizer, who is calculated as:

||x||LTV = (x00 − x01)2 + (x00 − x10)2

+ (x10 − x11)2 + (x01 − x11)2.
(19)

Let g(x) = ||x||LTV , d1 = [1, 0,−1, 0]T , d2 =
[1,−1, 0, 0]T , d3 = [0, 1, 0,−1]T , and d4 = [0, 0, 1,−1]T .
We have

g(x) =

4∑
i=1

xT did
T
i x. (20)

Similarly, let f(x) = 4||x||2,1DCT , e1 = [1, 1,−1,−1]T , e2 =
[1,−1, 1,−1]T , and e3 = [1,−1,−1, 1]T . We have

f(x) =
(
eT1 x

)2
+
(
eT2 x

)2
+
(
eT3 x

)2
= xT e1e

T
1 x+ xT e2e

T
2 x+ xT e3e

T
3 x

=

3∑
i=1

xT eie
T
i x.

(21)

Consider two minimizations min f(x) and min g(x). Their
optimal solutions satisfy:

Oxg(x) = 2

4∑
i=1

did
T
i x = Gx = 0,

Oxf(x) = 2

3∑
i=1

eie
T
i x = Fx = 0,

(22)

where F = 2
∑3

i=1 eie
T
i , G = 2

∑4
i=1 did

T
i and their null

spaces are equivalent N (F ) = N (G).
Furthermore, for the N×M image X we can also construct

its Ĝ and F̂ as:

Ĝ = 2

n∑
i=1

4∑
m=1

d̂i,md̂
T
i,m,

F̂ = 2
n∑

i=1

3∑
m=1

êi,mê
T
i,m,

(23)

where n = (N−1)×(M−1) is the number of patches divided
by ||x||2,1DCT , d̂ = [d̂1,1, ..., d̂1,4, ..., d̂n,1, ..., d̂n,4] ∈ RNM×4n

and ê = [ê1,1, ..., ê1,3, ..., ên,1, ..., ên,3] ∈ RNM×3n. d̂n,m =
vec(Dn,m) with

PΩn
(Dn,m) = vec(dk), (24)
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and ên,m = vec(En,m) with

PΩn
(En,m) = vec(ek), (25)

where Dn,m ∈ RN×M and En,m ∈ RN×M . PΩn(X) denote
the components of X in Ωn which is the area of the n-th
patch in X . It is obvious that the null spaces of Ĝ and F̂ are
identical according to Fcn. 22. Hence the optimal solution of
DRM is equal to that of the TV regularizer minimization for
any image.

According to Theorem 1, we also can estimate images with
local smoothness by replacing the traditional TV regularizer
with the proposed DCT regularizer.

IV. DCT REGULARIZER FOR VISUAL RECOVERY

This section discusses the visual recovery theory based on
the proposed multi-scale DCT regularizer. Image completion
aims to restore a clean image from its corrupted observation
Y with an observed region Ω. Recovering missing values in a
matrix with limited observed information has recently attracted
considerable interest [32], [11], [26].

A. Model

This problem is commonly addressed with inpainting [26]
or denoising [23] methods, especially when the missing ratio
is not too high (≤ 80%). The non-local means [8] and its vari-
ations [23], [17] are the current state-of-the-art techniques and
exploit the self-similarity characteristic of images. However,
when the observation is very corrupt, e.g., the missing ratio is
higher than 90% (see Fig. 4), non-local based algorithms are
less useful since they cannot find similar patches in the given
image without a reconstruction by interpolation.

Based on the proposed multi-scale DCT regularizer and
existing rank minimization techniques, we establish an effi-
cient optimization problem that contains the various factors
mentioned above:

X̂ = arg min
X
||X||∗ +

s∑
i=1

λi||X||pi,qi
DCT

+
γ

2
||PΩ(X)− PΩ(Y )||2F ,

(26)

where λi denotes the weighting parameter for the DCT regu-
larizer ||X||pi,qi

DCT of X in the i-th scale. γ > 0 is a relaxation
factor that converts the original problem into an unconstrained
minimization [26].

B. Optimization.

The relaxed problem can be solved using the accelerated
proximal gradient line method (APGL) [28]. We first refor-
mulate Fcn. 26 as

X̂ = arg min
X

F (X) = ||X||∗ + f(X), (27)

where

f(X) =
∑
i

λi||X||pi,qi
DCT +

γ

2
||PΩ(X)− PΩ(Y )||2F , (28)

Algorithm 1 DRM for visual recovery.

Input: Observation Y , Ω, λ, γ;
1: t1 = 1, E1 = X1 = Y ;
2: repeat
3: for each scale pi do
4: Divide Xk into pi × pi patches to form Xpi

;
5: end for
6: Calculate the gradient Of(X) according to Fcn. 29;
7: (U,Σ, V )← svd (Ek − tkOf(Xk));
8: Xk+1 ← UTtk(Σ)V T ;

9: tk+1 ←
1+
√

4t2k+1

2 ;
10: Ek+1 ← Xk+1 + tk−1

tk+1
(Xk+1 −Xk);

11: k ← k + 1;
12: until ||Ek+1 −Xk||F ≤ ε
Output: The estimated image X̂ = Ek+1;

and the gradient of f(X) is

Of(X) =γ (PΩ(X)− PΩ(Y )) +∑
i

λiI
(
CT [Spi,qi ∗ (CXpi)]

)
, (29)

where I(·) is an operation that recovers the stacking matrix
Xpi

into the original image and I(Xpi
) = X .

For any t > 0 and a given point E of F (X), APGL
constructs an approximation

Q(X,Y ) =||X||∗+ < X − E,Of(E) > +

1

2t
||X − E||2F + f(E),

(30)

and for the k-th iteration, we can update Xk+1 by:

Xj+1 =argmin
X

Q(X,Ek)

= argmin
X
||X||∗ +

1

2tk
||X − (Ek − tkOf(Xk))||2F .

(31)

Fcn. 31 can be easily solved by utilizing the soft-thresholding
technique, i.e.,

Xj = UTtk(Σ)V T , (32)

where UT ΣV = Ek − tkOf(Xk) is the singular value
decomposition (SVD) and

Ttk(Σii) = max(Σii − tk, 0), (33)

where Σii is the i-th largest singular value and tk+1 and Ek+1

are updated as

tk+1 =
1 +

√
1 + 4t2k
2

,

Ek+1 = Xk+1 +
tk − 1

tk+1
(Xk+1 −Xk).

(34)

We describe the image completion method by exploiting the
proposed multi-scale DCT regularizer as showed in Algo-
rithm 1.
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(a) Observations (b) SVT (c) TNNR (d) LTVNN (e) MTVNN (f) L-DRM (g) G-DRM (h) DRM

Fig. 2: A comparison of the DCT regularizer and other schemes in removal problems. From left to right, the figures show
corrupted observations and reconstructed images using the state-of-the-art methods.

V. EXPERIMENTS

A. Experimental setup

The test dataset. Experiments were carried on 14 images [18],
[23] widely used for evaluating the performance of image
restoration algorithms (Fig. 3). This is a benchmark dataset
widely used for evaluating the visual recovery performance,
with a variety of scenes, e.g., human faces, buildings, plants,
animals. In addition, they are RGB color images with size of
256× 256.

Fig. 3: The test images.

Compared schemes. We conducted experiments using differ-
ent image completion algorithms to compare the performance
of the proposed DCT regularizer with current methods. There-
fore, completion experiments were carried using the proposed
DRM and state-of-the-art comparison algorithms: SVT [9],
TNNR [26], and LTVNN [25]. Most of the comparative meth-
ods were conducted using source codes provided by authors.
SVT is reported as the baseline since it is the cornerstone of
the low rank approach, and TNNR is an enhanced low rank
completion algorithm that is known to produce better results.

LTVNN embeds the linear TV regularizer into the low rank
minimization. In order to have an explicit demonstration of
the superiority of the proposed multi-scale DCT regularizer,
we also report the results exploiting the global and local DCT
regularizers, marked as G-DRM and L-DRM.

Parameter settings. The proposed completion algorithm has
several important parameters: pi, qi and λi with i = 1, ..., s,
it is obvious that a DCT regularizer with a lager s has a
big computational complexity, but has smoothness in more
views. In the experiments, pi was set as 2 and 256 (the size
of each image) to obtain a better smoothness estimation and
q1 = 1, q2 = 128, which denote the locally and globally
smooth regularizations, respectively. Accordingly, in order to
have a fair comparison, p and q in the L-DRM and G-DRM
are set to be p = 2, q=1, and p = 256, q = 128, respectively.
The weight parameter γ was set to 0.06, λ1 = 0.25, and
λ2 = 0.5. For the algorithm stop conditions, we set the
tolerance ε in Alg. 1 to 10−4 and the maximum iteration
number K = 1000. In fact, the proposed algorithm is not
sensitive to most of parameters, thus all of the parameters were
set empirically which is a common setting in the context of
low-rank minimization [26]. Since TNNR will be degenerated
into SVT while the parameter r in ||X||r is set to 0, we
set r = 5 in TNNR to compare the results of TNNR and
SVT. Note that the proposed DCT regularizer adopts the
original nuclear norm since when the corruption has been
terribly damaged the first several largest singular values are
also corrupted significantly, we will further illustrate this
phenomenon in Fig. 4.
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TABLE I: An overall comparison on the performance of the removal experiment.

Corruption type SVT TNNR LTVNN MTVNN L-DRM G-DRM DRM

Text
PSNR(dB) 28.64 28.63 31.60 31.75 32.01 30.91 32.59

SSIM 0.9612 0.9617 0.9791 0.9799 0.9815 0.9748 0.9832
Time(s) 8.31 26.00 17.62 23.83 18.86 11.53 17.40

Scratch
PSNR(dB) 29.01 29.20 33.05 33.21 33.37 31.71 34.27

SSIM 0.9539 0.9579 0.9826 0.9834 0.9844 0.9741 0.9858
Time(s) 8.92 29.82 9.31 14.49 8.70 4.26 7.32

block 5
PSNR(dB) 32.64 32.90 35.15 35.29 35.55 33.83 36.03

SSIM 0.9828 0.9836 0.9907 0.9910 0.9918 0.9869 0.9921
Time(s) 7.56 14.51 14.70 20.85 16.59 10.94 14.92

block 10
PSNR(dB) 28.82 28.22 31.03 31.19 31.58 29.24 32.23

SSIM 0.9658 0.9648 0.9776 0.9783 0.9801 0.9703 0.9822
Time(s) 9.19 45.98 23.61 36.30 32.86 49.48 38.36

B. Compared with the TV regularizer

As we have discussed above, the low-rank assumption is
not sufficient when the observed image has been corrupted
seriously. Thus a powerful regularization should be introduced
to make the estimated image smooth. Since the traditional TV
regularizer regularization can also be utilized for estimating
a clean and smooth image we first compare the proposed
DCT regularizer with the TV regularizer on several benchmark
experiments for evaluating the smoothnesses of their desired
images.

According to Theorem 1, we conclude that the optimization
problem formulated by ||x||2,1DCT is exactly that of the TV reg-
ularizer. Moreover, it is obvious that the proposed multi-scale
DCT regularizer has more functionalities than the conventional
TV regularizer. Thus we suggest that the proposed approach
in Fcn. 16 has benefits over that of the TV regularizer since
there is flexible to control over the degree of smoothness by
operating at multiple scales.

The TV regularizer is noted for its strong capacity for image
inpainting, e.g., text removal, scratch removal [26]. This is a
challenging task, because the pixels covered by the text are
not randomly distributed. Hence, the optimization function
with a regularization that encourages global smoothness might
be expected to perform well. Additionally, these removal
tasks can also be performed by the conventional nuclear
norm algorithms [26]. Thus we first compare the proposed
DCT regularizer with others by conducting these removal
experiments. Generally, there are three types of masks for
testing the performance of removal algorithms.
Text & scratch masks. Text & scratch removal is a classical
challenge for visual recovery since pixels covered by text or
scratch are distributed unevenly, and some important structure
and texture of the original image may be damaged.
Block mask. Block missing is another common situation, due
to images and videos are usually compressed after dividing
into several patches (e.g., JPEG [42] & JPEG2000 [14]).
Although an image can be seen as a matrix with continuous
pixels, there is still some subtle independent texture in any
block area. Thus, it is hard to estimate the desired image when
there are many missing blocks on the corrupted observation.

We generated corrupted observations by exploiting three

masks as showed in Fig. 2. Then, we conduct the removal
experiment using the proposed DCT regularizer and the state-
of-the-art methods. We used two standard criteria to evaluate
the recovery performance: PSNR and structural similarity
(SSIM) [45]. Results are showed in Tab. I, these values are
averages of the 14 test images, where block 5 denotes there are
100 missing blocks on the corrupted observation and their size
is 5× 5, and block 10 denotes there are 50 missing blocks on
the corrupted observation and their size is 10×10, respectively
(see 3rd and 4th lines in Fig. 2). The proposed DRM for visual
recovery is superior to the others. Obviously, peak signal-to-
noise ratio (PSNR) values of the proposed DCT regularizer are
about 1dB higher than those of the TV regularizer and SSIM
values of the proposed DCT regularizer are about 0.01 higher
than those of others. Wherein, estimated results of L-DRM
are similar to those of LTVNN and superior to those of SVT,
TNNR, and G-DRM, which means that the local smoothness
is more important than the global smoothness for images. We a
lso reported the MATLAB running times of various methods.
Obviously, running times of SVT are smaller than those of
others. In addition, it is worth mentioned that the more difficult
the task is, the longer running time becomes, e.g., block 10
> block 5 for every method. Here we also test the visual
recovery performance of the multi-scale TV regularizer [19],
[7], [4], which is formulated by ranging the stride of pixels
and can produce more smooth estimations, namely MTVNN.
As shown in Tab. I, results of MTVNN are slightly higher
than those of LTVNN but require more running time.

Besides the quantitative results, we also conduct some
qualitative comparisons between different recovery schemes
as showed in Fig. 2. Visual recovery results obtained with the
proposed multi-scale DCT regularizer are superior to those of
the traditional TV regularizer and nuclear norm. Especially,
results by exploiting the proposed DCT regularizer are more
clear and smooth than those of using the TV regularizer
because it takes all pixels into consideration.

C. Visual Recovery

Sec. V-B shows that the proposed DCT regularizer is
superior to the traditional TV regularizer and nuclear norm
based algorithms for mask removing. Here we employ the
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(a) Observations (b) SVT (c) TNNR (d) LTVNN (e) L-DRM (f) G-DRM (g) SAIST (e) WNNM (f) DRM

Fig. 4: The completion results for various corrupted images with different missing rate (20% ∼ 99%). Corrupted observations
are shown in the first column and the reconstructed images using SVT, TNNR, LTVNN, L-DRM, G-DRM, SAIST, WNNM, and
the proposed DRM are shown from left to right. DRM results are more visually pleasing than those of previous state-of-the-art
methods.

proposed DCT regularizer to the extreme visual recovery task.
As have been discussed above, some important information
and structure of an image will be covered by text or scratch,
which makes the recovery task difficult. While in realistic,
if the transmission or photographing conditions deteriorate
further, missing pixels will constantly increase such as terribly-
damaged images due to unstable online transmission, cameras
covered by noises, and outdoor pictures taken behind a screen
window. More essential structure and texture may be destroyed
in these situations. Fig. 4 shows some synthetic images with
pixel missing. Observations were generated by randomly sam-

pling a small proportion of pixels from the images subject to
a Gaussian distribution. From top to bottom and their missing
pixel rates: Bike (20%), Bird (40%), Flower (60%), Peppers
(80%) , Girl (90%), Butterfly (95%), Parthenon (98%), and
Plants (99%).

As can be seen in Fig. 4, it is obvious that all methods
are effective for estimating desire images when the missing
rate is not too high (e.g., ≤ 80%). However, outputs of these
algorithms are various when the missing rate is larger than
80%. Although the conventional rank minimization scheme
can be utilized to estimate a complete observation, it is obvious
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TABLE II: A comparison on the visual recovery performance of DRM and other state-of-the-art methods.

Missing Rate φ SVT TNNR LTVNN L-DRM W-DRM SAIST WNNM DRM

20%
PSNR(dB) 31.17 31.45 35.26 35.03 32.24 39.14 38.93 35.54

SSIM 0.9663 0.9692 0.9884 0.9884 0.9754 0.9911 0.9910 0.9879
Time(s) 3.27 3.44 5.28 3.22 2.00 447.90 511.62 2.03

40%
PSNR(dB) 26.73 27.07 30.99 30.96 28.95 34.77 33.47 31.83

SSIM 0.9161 0.9219 0.9698 0.9707 0.9484 0.9787 0.9731 0.9731
Time(s) 5.22 6.07 7.68 4.94 3.40 445.47 1137.43 3.64

60%
PSNR(dB) 23.14 23.61 27.68 27.84 26.80 31.10 29.01 28.88

SSIM 0.8377 0.8462 0.9381 0.9416 0.9173 0.9567 0.9359 0.9510
Time(s) 8.11 13.08 11.16 7.76 6.74 447.94 951.01 6.38

80%
PSNR(dB) 19.31 19.75 24.21 24.61 24.63 26.94 25.16 25.66

SSIM 0.7084 0.7044 0.8743 0.8844 0.8729 0.9063 0.8682 0.9063
Time(s) 11.20 33.29 20.52 15.93 23.44 447.88 1021.28 15.09

90%
PSNR(dB) 16.73 14.16 21.58 22.19 22.40 23.83 22.83 23.28

SSIM 0.5964 0.4435 0.8010 0.8200 0.8161 0.8419 0.8053 0.8529
Time(s) 10.40 60.49 28.01 27.24 53.20 444.06 1088.97 27.81

95%
PSNR(dB) 15.15 9.17 19.40 20.17 19.93 21.67 21.19 21.44

SSIM 0.5061 0.1677 0.7273 0.7558 0.7362 0.7767 0.7513 0.8001
Time(s) 11.85 67.40 35.76 46.68 104.69 440.55 1211.31 57.17

98%
PSNR(dB) 14.00 6.13 16.92 17.71 16.86 19.43 19.48 19.52

SSIM 0.3946 0.0636 0.6280 0.6692 0.6079 0.7003 0.6925 0.7357
Time(s) 15.43 29.50 53.52 92.79 174.89 434.99 1242.26 118.66

99%
PSNR(dB) 13.42 5.52 15.60 15.93 15.15 17.99 18.21 18.33

SSIM 0.3237 0.0495 0.5635 0.6059 0.5236 0.6499 0.6526 0.6941
Time(s) 17.41 20.05 64.94 146.54 173.92 433.03 1237.84 174.00

that they will not be effective since there are too less useful
pixels in the observations. Detailed comparisons are shown
in Tab. II, where the highest evaluation result in each case is
highlighted in bold. The proposed visual recovery algorithm
based on the DCT regularizer clearly outperforms other low-
rank matrix completion methods.

It is interesting to note that TNNR’s estimation is better than
that of SVT when the missing rate φ is less than 90%, while it
is inferior to SVT when 90 < φ. This is because TNNR retains
the largest r singular values, which depicts the major structure
of the input image, but most likely reflects the structure of
the corrupted image with a considerable missing rate; hence,
TNNR is inefficient. Since the proposed DCT regularizer can
conductively recover image structure, we set a larger threshold
r = 128 in DRM to avoid undesired lines caused by excessive
minimization of the nuclear norm.

Moreover, G-DRM produces some uncoordinated grids due
excessive reduction of necessary high-frequency information,
and the results of L-DRM are similar to that of the TV
regularizer. Since images produced by DRM are smooth and
natural, they have a better perceptual quality. It is obvious that
the result of G-DRM has a clearer overall structure, while
its local regions are not smooth enough. The result of L-
DRM presents an opposite phenomenon. The multi-scale DRM
achieves the best performance by combining them.

The SVT results contain several lines because this algorithm
slightly undermines the image structure when shrinking all
singular values; therefore, the TNNR estimation is more
visually pleasing when the missing pixel rate is not too

high. Although the results of LTVNN are better than those
of the previous two algorithms, but the estimated images
by utilizing the LTVNN are not particularly clear, there are
also some undesired patterns. According to Theorem 1, the
proposed local DCT regularizer has the same functionality of
the linear TV regularizer. Thus, the results of the LTVNN
are similar to those of the L-DRM. It is obvious that the
estimated images of the proposed algorithm are clear, sharp,
and visually pleasing because the multi-scale DCT regularizer
makes the image and its patches at different scales smooth
and natural. Specifically, it obtains an estimation in which
the neighborhood pixels inside are smoothed using the locally
smooth DCT regularizer and it can also obtain an estimation
that produces a globally smooth output by exploiting the
globally smooth DCT regularizer.

D. Comparison with Nonlocal Based Approaches
In the above section, we have shown that the proposed DRM

approach has strong ability for extreme visual recovery tasks.
Apparently, recovery tasks with less missing rates are directly
related to the traditional image inpainting theory. Thus, it is
necessary to compare the proposed DRM with the non-local
based image restoration schemes which hold the highest per-
formance in both image denoising and image inpainting [23],
[22], [18], [17]. To this end, in Fig. 4 and Tab. II, we also
report results of SAIST [17] and WNNM [23], which utilize
low-rank assumptions and hold the highest performance.

It is worth mentioning that, these two methods need re-
construct the corrupted observations by interpolation first [17]
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(a) Observations (b) Fence masks (c) SVT restoration (d) LTVNN restoration (e) DRM restoration

Fig. 5: A comparison of the performance of various algorithms on real world images restoration, observations are taken behind
fences. (b) are masks for removing fence occlusions. (c)-(e) show the estimated images by exploiting different method.

since the “self-similarity” of original images has been dam-
aged terribly. In addition, we used 100× (1− φ) as the noise
level for conducting WNNM. As shown in Fig. 4, both SAIST
and WNNM can estimate clean and smooth images. However,
estimated images through SAIST and WNNM have some grids
when φ > 90 since blank areas are filled with surrounding
pixels. Thus, their PSNR and SSIM values are inferior to
those of DRM. While when φ < 90, i.e., the non-extreme
case, PSNR and SSIM values of SAIST are higher than those
of others benefiting from the strong restoration ability of the
self-similarity priori.

Furthermore, we also reported their MATLAB running times
in Tab. II. Since each patch in corrupted observations need
to be processed with several similar patches simultaneously,
non-local based image restoration methods have larger com-
plexities and longer running times.

E. Real-word Image Restoration

The above experiments are conducted on a set of benchmark
test images and all the corrupted observations are generated
synthetically. Actually, corrupted images are exactly the com-
binations of two independent images, i.e., the original image
and the occlusion mask. However, the requirement may be
more complex in realistic. We do not only need to recovery
some noise pixels of the observed image, but also need to
remove some unwanted objects, e.g., to remove some annoying
texts and advertisements in the top of a magazine, recovery a
photo taken behind a screen window or fence [46], [35] (see
Fig. 5). Since the desired image gets tangled in other objects,
e.g., a gibbon is grasping the fence, the corrupted areas and
clean areas are usually continuous, thus to implement this type

of visual recovery is much more difficult than handling the
synthetic missing problem.

We take several real images taken behind fences as exam-
ples. In order to estimate the original scenes, we first mask all
pixels of fences manually as shown in Fig. 5b, which is similar
to the removal experiment in Fig. 2 but has more complex
masks. Then, we recover these missing pixels by using the
proposed DRM and the state-of-the-art methods, as illustrated
in Fig. 5(c)-FIg. 5(d). Obviously, the estimated images by
utilizing the proposed DRM are more clear and natural than
those of the other methods. Especially, when fence occlusion is
extremely dense, the traditional low-rank minimization scheme
will be not applicable while the proposed DCT regularizer can
also handle the problem perfectly.

F. Discussion on Weight Matrix

The global DCT regularizer is defined by utilizing a binary
mask Sq in Fcn. 11, which gives various high-frequency
coefficients the same weight. While the higher frequency
coefficients are generally much larger than lower frequency
coefficients which should be given larger weights. Thus, we
also test a weighted global DCT regularizer with the mask
by exploiting the following function which gives weights
of frequency coefficients from 0 to 1. For the given matrix
X ∈ RN×M , its mask is defined as

Sij =
ij

NM
, (35)

namely W-DRM.
Fig. 6 shows a comparison between the proposed G-DRM

and W-DRM. The performance of W-DRM is slightly higher
than that of G-DRM. Since coefficients of natural images are
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(a) Observations (b) G-DRM (c) W-DRM

PSNR = 20.76 PSNR = 29.90 PSNR = 31.57

PSNR = 5.17 PSNR = 26.57 PSNR = 26.66

Fig. 6: A comparison between G-DRM and W-DRM.

increasing from high-frequency to low-frequency, Fcn. 35 is
more suitable for handling some image restoration tasks. We
will further investigate the weight matrix for constructing the
global DCT regularizer in future works.

VI. CONCLUSIONS

Most existing rank-minimizing techniques do not efficiently
handle data with over 90% missing values. Therefore, we
propose a powerful smooth regularization to overcome this
problem: the DCT regularizer. Compared to the traditional TV
regularizer, the proposed scheme involves all the pixel values
and can guarantee estimation smoothness at different scales.
Moreover, we demonstrate that the TV regularizer can be re-
garded as a special case of the DCT regularizer. By combining
the truncated nuclear norm and the proposed scheme we estab-
lish an efficient image completion model. Experiments show
that the estimated images using the proposed multi-scale DCT
regularizer are more visually pleasing than those produced
by the previous state-of-the-art. Additionally, the proposed
smooth regularization can be independently embedded into
most image processing tasks, e.g., image inpainting and image
denoising.
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