
0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Packing Convolutional Neural Networks in the
Frequency Domain

Yunhe Wang, Chang Xu, Chao Xu and Dacheng Tao, Fellow, IEEE

Abstract—Deep convolutional neural networks (CNNs) are successfully used in a number of applications. However, their storage and
computational requirements have largely prevented their widespread use on mobile devices. Here we present a series of approaches
for compressing and speeding up CNNs in the frequency domain, which focuses not only on smaller weights but on all the weights and
their underlying connections. By treating convolution filters as images, we decompose their representations in the frequency domain as
common parts (i.e., cluster centers) shared by other similar filters and their individual private parts (i.e., individual residuals). A large
number of low-energy frequency coefficients in both parts can be discarded to produce high compression without significantly
compromising accuracy. Furthermore, we explore a data-driven method for removing redundancies in both spatial and frequency
domains, which allows us to discard more useless weights by keeping similar accuracies. After obtaining the optimal sparse CNN in the
frequency domain, we relax the computational burden of convolution operations in CNNs by linearly combining the convolution
responses of discrete cosine transform (DCT) bases. The compression and speed-up ratios of the proposed algorithm are thoroughly
analyzed and evaluated on benchmark image datasets to demonstrate its superiority over state-of-the-art methods.

Index Terms—CNN compression, Discrete Cosine Transform, Frequency domain speed-up, DCT bases.

F

1 INTRODUCTION

T HANKS to the large amount of accessible training data and
computational power of GPUs, deep learning models, espe-

cially convolutional neural networks (CNNs), have been success-
fully applied to various computer vision (CV) applications such
as image classification [41], [51], [5], visual recognition [42], [9],
[27], image processing [14], and object detection [17], [37], [38].
However, most of the widely used CNNs can only be launched
on desktop PCs or even workstations given their demanding
storage and computational resource requirements. For example,
over 232MB of memory and over 7.24 × 108 multiplications are
required to launch AlexNet and VGG-Net per image, preventing
them from being used in mobile terminal apps on smartphones or
tablet PCs. Nevertheless, CV applications are growing in impor-
tance for mobile device use and there is, therefore, an imperative
to develop and use CNNs for this purpose.

Considering the lack of GPU support and the limited storage
and CPU performance of mainstream mobile devices, compressing
and accelerating CNNs is essential. Although CNNs can have
millions of neurons and weights, a recent research [19] has
highlighted that over 85% of weights are useless and can be set to
0 without an obvious deterioration in performance. This suggests
that the gap in demands made by heavy CNNs and the limited
resources offered by mobile devices may be bridged.

Some effective algorithms have been developed to tackle this
challenging problem. [18] utilized vector quantization to allow
similar connections to share the same cluster center. [13] showed

• Y. Wang and C. Xu are with the Key Laboratory of Machine Perception
(Ministry of Education) and Cooprtative Medianet Innovation Center,
School of EECS, Peking University, Beijing 100871, P.R. China. E-mail:
wangyunhe@pku.edu.cn, xuchao@cis.pku.edu.cn.

• C. Xu and D. Tao are with the UBTech Sydney Artificial Intelligence Centre
and the School of Information Technologies in the Faculty of Engineering
and Information Technologies at The University of Sydney, J12 Cleve-
land St, Darlington NSW 2008, Australia. Email: c.xu@sydney.edu.au,
dacheng.tao@sydney.edu.au.

that the weight matrices can be reduced by low-rank decom-
position approaches. [8] proposed a network architecture using
the hashing trick and then transferred the HashedNet into the
discrete cosine transform (DCT) frequency domain [7] in order
to give different codes various weights by exploiting the property
of frequency distribution of natural images. [36], [10] proposed
binaryNet, whose weights were -1/1 or -1/0/1 [2]. [19] employed
pruning [20], quantization, and Huffman coding to obtain a
greater than 35× compression ratio and 3× speed improvement,
thereby producing state-of-the-art CNNs compression. Although
the performance of existing methods have been demonstrated on
benchmark datasets and models, some important issues in deep
model compression and speed-up remain to be fully addressed:

1) Contextual information. Independently considering each
weight ignores the context information of weights which tends
to be helpful for weights compression as well. Although some
SVD based methods [13], [28] utilized low rank matrix to
approximate original filters, they focused more on only the
relationship between filters rather than the internal relationship
between weights in a filter. Besides subtle weights, the redun-
dance may also lies in larger weights, e.g., a filter filled with 1
can be represented by only one direct current (DC) frequency
coefficient.

2) Smoothness. Convolution filters have been suggested to own
some intrinsic properties and used to be smooth [55], [34],
[7], as shown in Fig. 7. Though convolution filters are often
dense-valued in the spatial domain, the energy of their fre-
quency representations used to be concentrated in a few low-
frequency components, i.e., lots of high-frequency components
are negligibly small. In order to have an explicit illustration,
we visualized convolution filters of ResNet-50 in Fig. 1 (a).
Although sizes of these filters are very small (3× 3), they still
have some intrinsic structures. Fig. 1 (b) details average abso-
lute values of original filters and their frequency coefficients,

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(a) Original convolution filters of ResNet-50.

1 2 3 4 5 6 7 8 9

Position

0

0.01

0.02

0.03

A
v
e

ra
g

e
 A

b
s
o

lu
te

 V
a

lu
e

Frequency Domain Spatial Domain

(b) Coefficients statistics for ResNet-50.

(c) Compressed convolution filters of ResNet-50.

Fig. 1: Visualization of original filters and filters after discarding
top-3 high frequency coefficients in the DCT frequency domain.

where 1∼9 indicate frequency positions from low to high. It is
clear that values at higher frequency positions are smaller than
those at lower frequency positions. In contrast, values in the
spatial domain (original filters) are balanced. Moreover, Fig. 1
(c) shows filters after directly discarding top-3 high frequency
coefficients. These filters still have similar structures to those
in Fig. 1 (a), which suggests the negligible influence of higher
frequency coefficients on convolution filters.

3) Data dependency. Most of existing approaches accomplish
the compression without considering the data input [19], [10],
[8]. They assumed that removing smaller weights would have
negligible affection on the resulting feature map. However in
practice, the value of feature map is determined by the weights
of filters as well as the the value of input data. Small weights
may be associated with great input values, while large weights
can also be connected with subtle input values. The feature map
is therefore difficult to remain unchanged by solely considering
the filter.

To address these aforementioned problems, we propose to
handle convolution filters in the frequency domain using DCT
(see Fig. 2) in order to address these aforementioned problems. In
practice, convolution filters are designed for extracting intrinsic
structures of natural images, and can be usually regarded as
small and smooth image patches. Recall that any operation on
frequency coefficients of a convolution filter in the DCT domain
is equivalent to an operation performed simultaneously over all
weights of this filter in the spatial domain. We are thus motivated
to explore the contextual property of convolution filters using their
frequency coefficients. In order to achieve a higher compression
ratio, we factorize the representation of the convolution filter in
the frequency domain as the composition of common parts shared
with other similar filters and its private part describing some
unique information. Both parts can be significantly compressed
by discarding a large number of subtle frequency coefficients.
Furthermore, we suggest that the compression in the frequency
domain can receive valuable guidance from the input data in the
spatial domain. Hence, both redundancy in spatial and frequency
domains will be explored simultaneously, and more optimal

weights compression can be expected.
Meanwhile, we develop an extremely fast convolution calcu-

lation scheme that exploits the relationship between the feature
maps of DCT bases and frequency coefficients of convolution
filters. Specifically, a convolution between the input data and
a convolution filter can be realized by a weighted combination
of the convolution responses of DCT bases on the input data.
Furthermore, we have theoretically discussed the compression and
the speed-up of the proposed algorithm. Experimental results on
benchmark datasets demonstrate that our proposed algorithm can
consistently outperform state-of-the-art competitors, with higher
compression ratios and speed gains.

A preliminary version of this work was presented earlier [50],
namely CNNpack. The initial version excavates redundant weights
in the DCT frequency domain, and the present work adds to the
initial version in significant ways. First, we extend the CNNpack
to a data-driven method which not only discards subtle weights
in convolution filters but also excavates useless weights with
tiny responses to real word datasets. Second, we improve the
CNNpack by investigating redundancy in both frequency and
spatial domains, which provides a greater compression possibility
and explore a detailed optimization algorithm for compression
deep CNNs. Third, considerable new analyses and intuitive expla-
nations are added to the initial results. In addition, some recently
published methods have included for comparing with the proposed
method. Experimentally, we demonstrate that the compression
performance can be improved in comparison to the initial version
and the state-of-the-art methods.

This paper is organized as follows. Section 2 investigates
related works on compressing and speeding up CNNs. Section
3 proposes the CNNpack for compressing filters in the DCT
frequency domain, and the data-driven method, which investigates
the redundancy in spatial and frequency domains simultaneously,
is illustrated in Section 4. Section 5 explores a convolution speed-
up scheme. Section 6 presents the experimental setup and results
of our experimental validation, and Section 7 gives the conclusion
of this paper.

2 RELATED WORK

It is well known that, existing deep convolutional neural networks
are over-parametrized and there is significant redundancy in their
parameters [19], [18], [7], [13], [26]. A variety of related works
have been proposed to reduce the storage and complexity of
CNNs. Based on techniques they used, compression methods can
be divided into three categories.

2.1 Weight Matrix Decomposition
Fully connected layers, which are often placed in the last several
layers of the network, e.g., the last three layers of VGGNet-
16 [41], used to occupy a large proportion of the storage for
the entire CNNs. The output of a fully connected layer can be
formulated as Wx + b, where x is the input data, each row of
matrix W corresponds to the weights of a neuron, and b is the
bias. Given the enormous number of neurons (e.g., 4096) and
their inner similarity, considerable redundant information often
exists in the huge matrix. [13] used singular value decompo-
sition (SVD) technique to discover the low-rank approximation
of W [6]. Similarly, [28] regarded filters in a layer as a Tucker
and utilized tensor decomposition techniques to speed up CNNs.
However, filters are designed for extracting diverse information,

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

Input data DCT bases DCT feature maps

Weighted
combination

Feature maps of this layer

DCT bases K-means clustering

0.499
0.498
0.501
0.502
0.500

0.5

Huffman
&

CSR

Original filters l1-shrinkage Quantization Compression

Fig. 2: The diagram of the proposed CNN compression method in the frequency domain. Our method has two pipelines, the top
row shows our compression algorithm and the bottom row illustrates the proposed speedup scheme in the DCT frequency domain.
It is remarkable to note that the network compressed by the proposed method can be directly used in the frequency domain without
decompression.

the intrinsic rank of W might be large in practice. Employing a
rather low-rank matrix to represent W thus tends to significantly
decline the accuracy of the network. In addition, [30] replaced
original convolution filters by rank-1 matrices, and the original
square convolutions operations are divided into a series of vector
convolutions. Although the performance of the network consisting
of rank-1 matrices is inferior to that of the original one, it is
encouraged [44] to use vector filters (i.e., 1 × 7 and 7 × 1)
to construct a deeper network with higher accuracy and similar
amount of weights.

Another effective technique for matrix decomposition is to
construct a small dictionary using a set of pre-learned bases [26],
and then convolution filters can be approximated as a weighted
linear combination of basis filters. If the number of basis is much
less than the dimensionality of convolution filters, the storage
complexity will be reduced significantly. However, since there
are lots of filters whose sizes are relatively small, e.g., 3 × 3
filters in VGG-16 Net [41] and AlexNet [29] or even 1 × 1
filters in ResNet [23], it is difficult to discover such a small yet
accurate dictionary. [3] further proposed to decompose original
convolution filters as weighted combinations of basis filters and
sparse coefficients thus obtained higher compression and speed-
up ratios.

2.2 Weight Quantization

Weight quantization is another important way to remove redundant
information in weights of neurons within a well-trained CNN. Its
motivation is to excavate the similar information between different
areas (e.g., any 1×3 vectors in several 3×3 filters) of convolution
filters and represent them using the quantized data[12]. [18]
employed k-means to obtain the cluster centers of weights of con-
volution filters, and then approximately represented convolution
filters using their corresponding clustering centers. [8] used a hash
function to randomly cluster weights of convolution filters, so that
weights belonging to the same hash bucket can be represented
using a single parameter. [7] further proposed weighting the hash
codes by DCT coefficients in the frequency domain. These weight
sharing schemes indeed provide a considerable compression ratio
but they have no contribution to the speedup ratio.

To reduce the cost of 32-bit floating values storage and multi-
plications, [46] proposed a fixed-point implementation with 8-bit
integer values, and [25] explored an optimized fixed-point strategy

with ternary weights and 3-bit values. Network binarization is an
extreme approach for quantizing weights [10], [11], [49]. It simply
sets weights as +1/-1 according to their signs so that 32-bit floating
values become 2-bit binary and multiplication between floating
values is reduced to that of binary values, which significantly
reduces the storage and the computation simultaneously. However,
this simple strategy will sacrifice too much accuracy of the
network. Afterwards, [2] studied a random-like sparse network
with +1/0/-1 weights, which alleviates the hard +1/-1 constraint.
[36] proposed a more robust binarization method and a novel
XNOR calculation for the binarized net. But these attempts are
rather simple and crude which often leads to a significant accuracy
drop of the original CNN.

2.3 Weight Pruning

Pruning is a simple yet effective scheme for compressing
CNNs [21], [22], [20]. Considering the convolution as a weighted
combination of input data and filter weights, the weight whose
absolute value is extremely small tends to have limited influence
on the resulting feature map. [19] filtered weights in pre-trained
CNNs using a given threshold, and the generated sparse networks
can be compactly stored in sparse row format (CSR) [4] and
Huffman encoding [24]. The computation speedup can be real-
ized, given the sparseness of the stored convolution filters. The
effectiveness of the pruning strategy relies on the assumption that
if the absolute value of a weight in a CNN is sufficiently small, its
influence on the output is often negligible. However, if more than
90% components of convolution filters are discarded, there is a
strong probability that some pixels of the input image or its feature
maps are ignored. For example in Fig. 7(b), the first components
of all filters of a convolutional layer has been discarded, and these
filters will not scan and extract information from the first pixel of
any local patches.

On the other side, in order to achieve a considerable sparsity
of compressed CNNs, [33] learned a set of kernel bases (i.e., a dic-
tionary of convolution filters), and then transferred original filters
in the coefficient domain with high sparsity. Thus, the calculation
complexity of the sparse network is much lower than that of the
original one. In addition, [16] proposed using a mask to make
the input data sparse to reduce the computational complexity.
[52] excavated redundancy by pruning weights in different aspects
(e.g., channels, filters, neurons) resulting in a sparse and compact

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

CNN for speeding up. Therefore, we are also motivated to explore
a more sparse architecture of CNN in the DCT frequency domain.

3 COMPRESSING CNNS IN THE DCT FREQUENCY
DOMAIN

Recently developed CNNs contain a large number of convolution
filters. convolution filters often have some intrinsic patterns, so that
they can be applied for extracting informative features of input
images. We are thus motivated to regard convolution filters as
small images with intrinsic patterns, and present an approach to
compress CNNs in the frequency domain with the help of the
DCT.

3.1 The Discrete Cosine Transform (DCT)

Here, we briefly introduce some backgrounds of the two dimen-
sional DCT for digital images. Different from FFT coefficients,
coefficients of DCT are real numbers. DCT plays an important role
in JPEG compression [48], which is regarded as an approximate
KL-transformation for 2D images [1]. In JPEGs, the original
image is usually divided into several square patches, which are
then processed in the DCT frequency domain. Given an image
patch p ∈ Rn×n, its DCT coefficient C ∈ Rn×n is defined as:

Cj1j2 = D(pi1i2)

= sj1sj2

n−1∑
i1=0

n−1∑
i2=0

α(i1, i2, j1, j2)pi1i2 = cTj1Pcj2 ,
(1)

where sj =
√

1/n if j = 0 and sj =
√

2/n, other-
wise, and C = CT pC is the matrix form of the DCT, where
C = [c1, ..., cd] ∈ Rd×d is the transformation matrix. The basis
of this DCT is Sj1j2 = cj1c

T
j2

, where

cj(i) =

(
π(2i+ 1)j

2n

)
, (2)

and α(i1, i2, j1, j2) denotes the cosine basis function:

α(i1, i2, j1, j2) =

cos

(
π(2i1 + 1)j1

2n

)
cos

(
π(2i2 + 1)j2

2n

)
.

(3)

Additionally, the DCT is a linear lossless transformation, which
enables us to recover the original image by simply utilizing the
inverse DCT, i.e.,

pi1i2 = D−1(Cj1j2)

=
n−1∑
j1=0

n−1∑
j2=0

sj1sj2α(i1, i2, j1, j2)Cj1j2 ,
(4)

whose matrix form is p = CCCT . Furthermore, to facilitate the
notations we denote the DCT and the inverse DCT for vectors as

vec(C) =D(vec(p)) = (C ⊗ C)vec(p) = Svec(p),

vec(p) =D−1(vec(C)) = ST vec(C),
(5)

where vec(·) is the vectorization operation and⊗ is the Kronecker
product, S is the DCT transform which stacks d × d DCT bases,
and S is an orthogonal matrix, i.e., STS = I.

3.2 Convolutional Layer Compression
Given the success of DCT in image compression, we are motivated
to study the convolutional neural networks compression problem
in the DCT frequency domain. Considering the redundancy be-
tween filters in a relatively large CNN, filters can be decomposed
into common parts and private parts for compact storage. At
first, we consider compressing different layers separately. The
compression scheme is then extended into a global compression
for different layers.

For a given convolutional layer L, we first extract its convolu-
tion filters F = {F1, ..., FN}, where the size of each convolution
filter is d× d and N is the number of filters in L. Each filter can
then be transformed into a vector, and together they form a matrix
F = [vec(F1), ..., vec(FN)] ∈ Rd

2×N (here we drop the script
of channels for having an explicit presentation).

DCT has been widely used for image compression, since DCT
coefficients present an experienced distribution in the frequency
domain. Energies of high-frequency coefficients are usually much
smaller than those of low-frequency coefficients for 2D natural
images, i.e., the high frequencies tend to have values equal or
close to zero [48]. Additionally, the main profit in the frequency
domain is that we can simultaneously handle all pixels in original
filters by only processing one component in the frequency domain.
Hence, we propose to transfer F into the DCT frequency domain
and obtain its frequency representation C = SF = [C1, ..., CN],
where the i-th column Ci denotes the frequency representation
of the i-th in the DCT domain. The shrinkage in the frequency
domain can be easily formulated as

arg min
F̂
||F− F̂||2F + λ||SF̂||1, (6)

where F̂ is the desired sparse filter matrix in the DCT frequency
domain, || · ||F is the Frobenius norm, || · ||1 is the `1 norm, and λ
is a parameter for balancing the reconstruction error and sparsity
penalty.

A larger λ makes F̂ sparser, but reduces more performance of
the original network. In order to maintain the performance given
a relatively large λ, we propose clustering filters in F and using
cluster centers to retain some of their information. Thus, we first
exploit the conventional k-means algorithm on all filters in the
frequency domain, i.e., SF, to learn a codebook µ = [µ1, ..., µK]
of K cluster centers. The memory usage of the original network
will be significantly reduced by representing similar filters using
the corresponding cluster center, however the accuracy of the
original network will significantly decrease as well [18]. Besides
the clustering centers, we have to restore the residuals to retain
the accuracy. For each convolution filter, we divide its frequency
representation into common (cluster centers) and private parts
(residuals) as:

SFj = Rj + µkj , SF = R+ U, (7)

where kj = arg mink ||SFj − µk||2 is the index of the closest
cluster center, R = [R1, ...,RNi] stacks residual data in the i-th
convolutional layer, and U = [µk1 , ..., µkN] are corresponding
cluster centers. Then, we first fix cluster centers and employ the
`1 shrinkage to the residuals and reformulate Eq. 6 as:

arg min
R̂
||F− F̂||2F + λ||R̂||1

= arg min
R̂
||STR− ST R̂||2F + λ||R̂||1

= arg min
R̂
||R − R̂||2F + λ||R̂||1,

(8)

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

where R̂ is the desired sparse residual in the frequency domain,
which is given by:

R̂ = sign(R)�max{|R| − λ

2
, 0}, (9)

where sign(·) is the sign function and � is the element wise prod-
uct. In addition, cluster centers also account for a considerable
proportion of the amount of the data thus we also need to compress
cluster centers for having higher compression ratios. Therefore,
we employ the `1-shrinkage to the cluster centers before Eq. 7 to
remove redundancy, i.e.,

µ̂ = sign(µ)�max{|µ| − λ

2
, 0}, (10)

and reformulate Û = [µ̂k1 , ..., µ̂kN] according to indexes of
filters.

The sparse data obtained through Eq. 9 and Eq. 10 are con-
tinuous, which is not benefit for storing and compressing. Hence
we need to represent similar values with a common value, e.g.,
{0.101, 0.100, 0.102, 0.099} → 0.100. Inspired by the conven-
tional JPEG algorithm, rounding coefficients after dividing a large
integer will significantly discard subtle and useless information.
We use the following function to quantize the residual data:

R = Q
(
R̂,Ω, b

)
=
I
{

Ω · Clip(R̂,−b, b)
}

Ω
, (11)

where Clip(x,−b, b) = max(−b,min(b, x)) with boundary
b > 0, and Ω is a large integer with similar functionality to the
quantization table in the JPEG algorithm.

It is obvious that the quantized values in the given network
resulting from Eq. 11 are repeated thus we can construct a
codebook using all the unique values in them. Since occurrence
probabilities of elements in the codebook are unbalanced, repre-
senting and storing them in the same code length is inefficient.
Huffman encoding is therefore introduced for a more compact
storage. Moreover, there are numerous zeros in the data after
Huffman encoding, i.e., it is an extremely sparse matrix. Hence
the Huffman encoded data is stored in the compressed sparse row
format (CSR), denoted as Ei. In addition, cluster centers µ̂ will
be quantized and encoded to µ in the same manner to reduce
the storage requirement. Note that the same Huffman dictionary
have been used for the sparse cluster centers and residual data,
since they empirically follow the same distribution, since filters
are initialized by random Gaussian numbers [47] and residual data
generally follows a Gaussian distribution with zero expectation
due to the squared objective function in k-means.

Generally, the performance of the compressed CNN is inferior
to that of the original one, but it has been shown that a fine-
tuning operation after compression can enhance the accuracy of
the compressed network [20], [19] to a certain degree. In the
proposed algorithm, we also employ the fine-tuning approach by
fixing weights that have been discarded, i.e., weights pruned by
Eq. 10 will not change. Thus, the fine-tuning operation does not
decrease the compression ratio. After generating a new model in
each iteration, we apply Eq. 11 again to quantize its parameters
until convergence.

The above scheme for compressing convolutional neural net-
work has to store data matrices, including the compressed residual
data E and Huffman dictionary with H quantized values, the
compressed Ẽ composed of the k-means centers. Given a network
with p convolution layers {L1, ...,Lp}, the number of filters in

the i-th layer is Ni with the filter size of di × di. Weights in
CNN used to be stored in 32-bit floating-point, thus the amount of
the data for storing the original convolutional layer Li is 32Nid

2
i .

As for the network after applying the proposed scheme, we store
the Huffman dictionary in 32-bit floating-point to maintain the
precision of the network, and we only need logK bits to encode
indexes of cluster centers. The compression ratio of the proposed
approach for the given CNN can thus be calculated as:

rc =

∑p
i=1 32Nid

2
i∑p

i=1

(
Ni logK +Bi + B̃i + 32Hi

) , (12)

where Bi and B̃i are bits to store Ei and cluster centers, respec-
tively. Hi stands for the bits to store the Huffman dictionary (i.e.,
one-dimensional cluster centers).

Since sizes of filters in different convolutional layers are
various, we need to apply p times k-means algorithm and learn
p Huffman dictionaries with p hyper-parameters (number of
clusters) accordingly. Given the fact that filters are initialized by
Gaussian random numbers [47], the range of filters in different
layers of a well developed network tends to be consistent. If
filters from different layers share the same cluster centers and
Huffman dictionary, the compression ratio of the proposed ap-
proach will be reduced significantly. Especially, there are more
than 30 convolutional layers in current CNNs [43], [23]. To
enable all convolution filters to share the same cluster centers
U ∈ Rd

2
i×k in the frequency domain, we must convert them

into a fixed-dimensional space. It is intuitive to directly resize
all convolution filters into matrices of the same dimensions and
then apply k-means. However, in the spatial-domain, this simple
resizing method is not applicable. Considering d as the target
dimension and di × di as the convolution filter size of the i-th
layer, the weight matrix would be inaccurately reshaped in the
case of di < d or di > d. Especially, when di > d, we need
to discard d2i − d

2
elements in each convolution filter thus the

structure and the functionality of original filters will be destroyed.
However, this size inconsistency issue can be more easily

handled in the frequency domain. Resizing the DCT coefficient
matrices of convolution filters in the frequency domain is reason-
able, because high-frequency coefficients are generally small and
discarding them only has a small impact on the convolution results
(di > d). On the other hand, the additionally introduced zeros
will be immediately compressed by CSR since we do not need
to encode or store them (di < d). Formally, given a convolution
filter F in the i-th convolutional layer, let C = D(F) ∈ Rdi×di
be its frequency coefficients, the resizing operation for convolution
filters in the DCT frequency domain can be defined as:

Ĉj1,j2 = Γ(C, d) =

{
Cj1,j2 , if j1, j2 ≤ d,
0, otherwise.

(13)

where d × d is the fixed filter size, and Ĉ ∈ Rd×d is the
coefficient matrix after resizing. Based on Eq. 13, we can obtain
a set of DCT coefficient matrices of a given CNN with the
same dimensionality. After transferring all convolution filters in
a d× d dimensional space in the DCT frequency domain, we can
pack all the coefficient matrices together and use only one set of
cluster centers to compute the residual data and then compress
the network. Alg. 1 summarizes the procedure of the proposed
algorithm for compressing CNNs.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Algorithm 1 CNNpack for compressing deep convolutional neural
networks in the frequency domain.

Input: A pre-trained convolutional neural network with p convo-
lutional layers L1, ...,Lp. The dimension and parameters of
CNNpack: d× d, λ, K, b and Ω.

1: Module 1: Filter extraction and transformation.
2: for each convolutional layers Li in the network do
3: for each convolution filter F (i)

j in Li do
4: Vectorize F (i)

j : F(i) ← [vec(F
(i)
1), ..., vec(F

(i)
Ni

)];
5: Transfer F(i) into the DCT frequency domain:

C ← SF(i) (Eq. 1);
6: Resize each Cj in C to a d× d matrix:

Cj ← Γ(Cj , d) (Eq. 13);
7: end for
8: end for
9: Module 2: Clustering and residual coding.

10: Generate K cluster centers µ = [µ1, ..., µK] using k-means;
11: Shrink and quantize µ to form µ (Eq. 10 and Eq. 11);
12: for each convolutional layers Li in the network do
13: for each column Cj in C do
14: Subtract the closest center: Rj ← Cj − µjk ,

where µjk ∈ µ, s.t. min ||Cj − µjk ||2;
15: Shrink the residual data R̂j (Eq. 10);
16: Rj ← Q

(
R̂j ,Ω, b

)
(Eq. 11);

17: end for
18: end for
19: Module 3: Fine-tuning and compressing.
20: repeat
21: Train the network by keeping the discarded components;
22: Quantize the residual data;
23: until convergence
24: Compress {R1, ...,Rp} and U by exploiting CSR and Huff-

man encoder to form {Ei} and Ẽ, respectively;
Output: The compressed data of residual data {Ei} and cluster

centers Ẽ, Huffman dictionaries, indexes of cluster centers.

The proposed algorithm has five hyper-parameters: λ, d, K, b,
and Ω. The network compression ratio can be calculated by:

rc =

∑p
i=1 32Nid

2
i∑p

i=1 (Ni logK +Bi) + B̃ + 32Hi

, (14)

where p is the number of convolutional layers. It is instructive to
note that a larger λ (Eq. 8) puts more emphasis on the common
parts of convolution filters, which leads to a higher compression
ratio rc. A decrease in any of b, d and Ω will increase rc
accordingly. Parameter K is related to the sparseness of Ei,
and a larger K would contribute more to Ei’s sparseness but
would lead to higher storage requirement. A detailed investigation
of all these parameters is presented in Section. 6, and we also
demonstrate and validate the trade-off between the compression
ratio and CNN accuracy of the convolutional neural work (i.e.,
classification accuracy [41]).

4 THE DATA-DRIVEN METHOD FOR COMPRESSING

Section 3 explores a compression method in the frequency domain
by discarding subtle frequency coefficients. Considering the task
of convolution filters to extract intrinsic patterns of input images,
an ideal compression method should focus not only on the filters

themselves but also on the input data. Therefore, we further extend
the compression methods into a data-driven fashion.

4.1 Modeling Redundancies
For a convolutional layer L with filters F = {Fq}Nq=1 of size
d × d, the input data is X ∈ RH×W and output feature maps
are Y = {Yq}Nq=1, where Yq ∈ RH

′×W ′
. We can reformulate

convolutions in L as
Y = XTF, (15)

where Y = [vec(Y1), ..., vec(YN)] ∈ RH
′W ′×N is a

matrix which stacks all feature maps together and F =
[vec(F1), ..., vec(FN)] ∈ Rd

2×N converts all filters into a matrix
similarly. X is a d2 × H ′W ′ matrix, each column of which is a
d × d patch extracted from X for calculating the corresponding
convolution responses in Y .

Given the data-driven motivation denoted as Eq. 15, the objec-
tive function of pruning redundancy in the frequency domain [50]
is

min
F

1

2
||Y −XTF||2F + λ||SF||1, (16)

where S is is the DCT transform matrix. Compared with Eq. 6, the
first term of Eq. 16 can be regarded as the regression error and λ is
a weight parameter for controlling the sparsity of the compressed
network.

In addition, by decomposing the frequency coefficients into
clusters and residuals, Eq. 16 can be rewritten as:

min
R

1

2
||Y −XTF||2F + λ||R||1,

s.t. SF = R+ U,
(17)

where U can be pre-obtained by using Eq. 10 and Eq. 11, and has
been fixed to preserve major properties of the original network.
Thus Eq. 17 can be simplified as:

min
R

1

2
||Y −XTF||2F + λ||R||1

= min
R

1

2
||Y −XT (ST (R+ U))||2F + λ||R||1

= min
R

1

2
||Ỹ −XTSTR||2F + λ||R||1,

(18)

where S is the DCT transformation matrix which is orthogonal,
i.e., STS = I, and Ỹ = Y − XTU . Besides the redundancy
of filters in the frequency domain, their properties in the spatial
domain can also be incorporated into the formulation

min
R

1

2
||Ỹ −XTSTR||2F + λ1||STR||1 + λ2||R||1 (19)

where STR is the residual data in the spatial domain, λ1 and
λ2 are parameters for balancing the regression error and two
`1 norms. Simultaneously considering the spatial and frequency
domains provides an effective approach to refine the compression
performance. In practice, we set λ1 < λ2 which means that the
sparsity in the spatial domain plays as an auxiliary role, since the
proposed method is mainly evaluated in the frequency domain.

Since the first term in Eq. 19 encourages the feature map
computed by the compressed network to be close to that of
the original network, the proposed compression strategy is more
focused. In specific, if we prune 90% weights solely based on
Eq. 6, 20% of them might significantly impact the generated
feature maps of the compressed network. However, given Eq. 19,
we can remove similar amount of weights while preserving the
performance of the original network.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

4.2 Optimization

There are three terms in the proposed Eq. 19, which cannot be
directly optimized. To handle them independently, two auxiliary
variables are introduced for help:

min
R1,R2,R3

1

2
||Ỹ −XTSTR3||2F + λ1||STR1||1 + λ2||R2||1

s.t. R3 = R1, R3 = R2.
(20)

The reformulated objective function can now be more easily
solved by exploiting the inexact augmented Lagrange multi-
plier [32]. By introducing multipliers µ1, µ2, E1, E2, the loss
function can be written as

L(R1,R2,R3, µ1, µ2, E1, E2)

=
1

2
||Ỹ −XTSTR3||2F + λ1||STR1||1 + λ2||R2||1

+ < E1,R3 −R1 > +
µ1

2
||R3 −R1||2F

+ < E2,R3 −R2 > +
µ1

2
||R3 −R2||2F .

(21)
The optimal residual data R can be obtained by updating
R1,R2,R3 iteratively.

Solove R1: The loss function w.r.t. R1 is

L(R1,µ1, E1) =< STE1,S
T (R3 −R1) >

+
µ1

2
||ST (R3 −R1)||2F + λ1||STR1||1,

(22)

which can be simplified as

L(R1, µ1, E1) =
1

2
||STR1 − ST (R3 +

1

µ1
E1)||2F

+
λ1
µ1
||STR1||1.

(23)

Its closed form solution is

R1 = SSλ1
µ1

(STR3 +
1

µ1
STE1), (24)

where Sλ(x) = sign(x) ◦max(|x| − λ, 0) is a soft-thresholding
operator for solving `1 norm regularized problem.

Solove R2: The loss function w.r.t. R2 is

L(R2, µ2, E2) =λ2||R2||1+ < E2,R3 −R2 >

+
µ2

2
||R3 −R2||2F .

(25)

Since S is an orthogonal matrix, i.e., STS = I, the above function
can be converted into the DCT frequency domain and rewritten as

L(R2, µ2, E2) =λ2||R2||1+ < SE2,R3 −R2 >

+
µ2

2
||R3 −R2||2F ,

(26)

which can be further simplified as

L(R2, µ2, E2) =
λ2
µ2
||R2||1+

1

2
||R2−(R3+

1

µ2
E2)||2F . (27)

The optimal R2 can be obtained through the following shrinkage
operation,

R2 = Sλ2
µ2

(R3 +
1

µ2
E2). (28)

Algorithm 2 Data-driven CNNpack for compressing CNNs.

Input: A pre-trained convolutional neural network N with p
layers: L1, ...,Lp, and a dataset X for compressing, pre-
trained cluster centers U , parameters λ1, λ2, µ1, µ2, ρ.

1: Divide X into b batches: X = {X1, ...,Xb}, N̂ = N ;
2: for i = 1 to p do
3: Extract convolution filters in Li to form Fi (Eq. 15);
4: R1 = R2 = R3 = SFi − U (Eq. 17);
5: E1 = E2 = R1/J(R1), µ1 > 0, µ2 > 0, ρ > 1;
6: repeat
7: Randomly select a batch Xj from X ;
8: Calculate the input data Xi of Li by using N̂ ;
9: Calculate feature maps Yi of Li by using N ;

10: Form X← Xi, Y ← Yi, Ỹ = Y −XTU (Eq. 18);
11: R1 ← SSλ1

µ1

(STR3 + 1
µ1
STE1);

12: R2 ← Sλ2
µ2

(R3 + 1
µ2
E2);

13: G← SXY − E1 − E2 + µ1R1 + µ2R2;
14: R3 ← (SXXTST + µ1I + µ2I)

−1G;
15: E1 ← E1 + µ1(R3 −R1);
16: E2 ← E2 + µ2(R3 −R2);
17: µ1 ← ρµ1, µ2 ← ρµ2;
18: until convergence
19: Quantize R3: R ← Q (R3,Ω, b);
20: Calculate the optimal filter matrix: F̂← ST

(
R+ U

)
;

21: Embed F̂ into the convolution layer Li in N̂ ;
22: end for
23: Fine-tune N̂ by keeping the discarded components;
Output: The new convolutional neural network N̂ .

Solove R3: The loss function w.r.t. R3 is

L(R3, µ1, µ2,E1, E2) =
1

2
||Ỹ −XTSTR3||2F+

+ < E1,R3 −R1 > +
µ1

2
||R3 −R1||2F

+ < E2,R3 −R2 > +
µ1

2
||R3 −R2||2F .

(29)

By minimizing its gradient, we can obtain the optimal solution of
R3 as

R3 = (SXXTST + µ1I + µ2I)
−1G, (30)

whereG = SXY−E1−E2+µ1R1+µ2R2. Finally, multipliers
are updated according

E1 = E1 + µ1(R3 −R1), E2 = E2 + µ2(R3 −R2),

µ1 = ρµ1, µ2 = ρµ2,
(31)

where ρ > 1 is a user-defined constant, and the optimal filter
matrix can be obtained as

F̂ = ST
(
R+ U

)
, (32)

whereR is the quantized residual data ofR3. Since the dataset for
training a sophisticated CNN usually has more than 100 thousands
samples, e.g., ImageNet dataset [40], tiny images dataset [45], we
use the mini-batch approach [35], [15] to optimize the proposed
compression method as shown in Alg. 2.

Moreover, since the learned network N̂ is sparse in the
frequency domain, we use the Huffman encoding and CSR to
further compress it after quantizing by employing Eq. 13, so that
the compression ratio could achieve the result in Eq. 14.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

5 SPEEDING UP CONVOLUTIONS

In above sections, we have proposed effective algorithms for learn-
ing compact models of pre-trained convolutional neural networks
in the frequency domain. According to Eq. 14, we can obtain
considerable compression ratios by converting the convolution
filters into the DCT frequency domain and representing them using
frequency coefficients.

If online inference is executed in the spatial domain as usual,
frequency representations of filters have to be transformed back
to the spatial domain using the inverse DCT (Eq. 4), i.e., decom-
pressing the compressed data E. Even if there is only one non-zero
component in the frequency domain, its inverted data in the spatial
domain are dense valued. The online memory thus cannot be really
saved, and the computational complexity of the convolutions will
be the same as that of the original network, let alone the extra
transformation cost from frequency to spatial domain. Hence,
we present a novel convolution method in the DCT frequency
domain, where both original input data and convolution filters are
represented in the frequency domain.

Given a convolutional layer L with filters F = {Fq}Nq=1 of
size d×d, we denote the input data (image or feature map) asX ∈
RH×W and its output feature maps as Y = {Y1, Y2, ..., YN}
with size H ′ ×W ′, where Yq = Fq ∗ X under the convolution
operation ∗. For the DCT matrix C = [c1, ..., cd] (Eq. 1), the d×d
convolution filter Fq can be represented by its DCT coefficient
matrix C(q) with DCT bases {Sj1,j2}dj1,j2=1 defined as Sj1,j2 =
cj1c

T
j2

, namely,

Fq =
d∑

j1=1

d∑
j2=1

C(q)j1,j2
Sj1,j2 . (33)

In this way, feature maps of X through F can be calculated as

Yq =
d∑

j1,j2=1

C(q)j1,j2
(Sj1,j2 ∗X), (34)

where M is the number of DCT bases. Based on Eq. 34, for the
input data (feature maps generated by the previous layer or the
input image of the first convolutional layer) X , we first transform
it into the DCT frequency domain by calculating its responses
on DCT bases and then generate feature maps using frequency
coefficients of filters.

As for the speed-up ratio rs, it is obvious that rs > 1 only
when M � N . Since M = d2 in the DCT, Eq. 34 cannot be
utilized for speeding up CNNs effectively when a layer has few
filters.

But considering the fact that the DCT is an orthogonal trans-
formation and all of its bases are rank-1 matrices, we thus have
Sj1,j2 ∗ X =

(
cj1c

T
j2

)
∗ X . The feature map Yq can then be

re-written as

Yq = Fq ∗X =
d∑

j1,j2=1

C(q)j1,j2
(Sj1,j2 ∗X)

=
d∑

j1,j2=1

C(q)j1,j2
[cj1 ∗ (cTj2 ∗X)].

(35)

The above function can reduce the computational complexity of
the convolution of a DCT basis from O(d2) to O(2d), which also
needs to be further squeezed.

Revisiting the DCT, for a given d × d matrix, we can obtain
d2 frequency coefficients by only applying the DCT once. Thus

it is worth for us to explore the relationship between the DCT
coefficients and the convolutional responses of the DCT bases
{Sj1,j2}. DCT can be regarded as a linear decomposition by
using its fixed bases, whose frequency components are exactly
the convolution responses of its bases, as proved in Theorem 1.

Theorem 1. For a d × d matrix X , its DCT coefficients are
calculated as C = CTXC , where Cj1,j2 is the frequency coef-
ficient corresponding to the basis Sj1,j2 . Cj1,j2 is also exactly the
convolution response of Sj1,j2 to X .

Proof. The DCT basis Sj1,j2 can be calculated as a convolution
of two cosine bases cj1 and cj2 , i.e.

Sj1,j2 = cj1c
T
j2 = cj1 ∗ cTj2 , (36)

and the calculation of its corresponding frequency coefficient
Cj1,j2 can be rewritten as

Cj1,j2 = cTj1Xcj2 = cTj1(cTj2 ∗X)

= cj1 ∗ (cTj2 ∗X) = (cj1 ∗ cTj2) ∗X
= (cj1c

T
j2) ∗X = Sj1,j2 ∗X,

(37)

thus the frequency component Cj1,j2 of X is equal to its convolu-
tion response obtained by Sj1,j2 .

According to Theorem 1, it is encouraging that the conven-
tional convolutions of DCT bases can be accelerated significantly.
Moreover, beneficial from the proposed compression scheme in
Alg. 1, any C(q) in Eq. 34 is extremely sparse. Thus the computa-
tional complexity of our proposed scheme can be further reduced,
as analyzed in Proposition 1.

Proposition 1. Given a convolutional layer with N filters, and
filter size is d × d. M = d × d is the number of DCT base,
and C ∈ Rd

2×N denote the frequency coefficients of filters in
this layer. Suppose δ is the ratio of non-zero elements in C, while
η is the ratio of non-zero elements in K ′ active cluster centers
of this layer. The computational complexity of our proposed
scheme is O((d2 log d+ηMK ′+ δMN)H ′W ′) for calculating
convolutions of this layer.

Proof. The computational complexity for the feature maps Y
can be computed as O(d2NH ′W ′). When implementing the
compressed CNN with our proposed algorithm, a naive approach
would be to invert all frequency-filters into the spatial domain
and then calculate spatial convolutions. Since the computational
complexity of a d × d DCT is O(d2 log d) [1], the overall
complexity of the method will be

O(d2 log dN + d2NH ′W ′) (38)

or, equally, O(d2NH ′W ′) considering d2 log dN �
d2NH ′W ′. However, this simple method tends to be inefficient
since it involves a lot of redundant computation. Hence, we
propose to first use the DCT bases as a set of filter bases to obtain
a set of feature maps; the feature map of a convolution filter can
then be quickly calculated by summarizing them based on their
DCT coefficients C.

Since we decompose the traditional convolutions by combi-
nations of feature maps of DCT bases in Eq. 35, the complexity
should be rewritten as

O((2dM +MN)H ′W ′). (39)

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Algorithm 3 CNNpack for speeding up deep convolutional neural
networks in the frequency domain.

Input: A compressed convolutional layer L with N filters F =
{F1, ..., FN}, filter size is d × d, input data X , and the size
of feature maps of this layer is H ′ ×W ′. The pre-operated
cluster centers µ.

1: Divide X into H ′ ×W ′ patches with size d× d: {X(i)};
2: for each local region X(i) in X do
3: Calculate M DCT coefficients of X applying Eq. 1 and

Eq. 37: Cj1,j2 ← Sj1,j2 ∗X(i), ∀j1, j2 = 1, ..., d;
4: Calculate feature maps of cluster centers:

Yµ ←
∑d
j1,j2=1 µj1,j2(Sj1,j2 ∗X(i));

5: for each convolution filter in L do
6: Calculate the convolution of its private part:

Y
(i)
q ←

∑d
j1,j2=1Rj1,j2(Sj1,j2 ∗X(i));

7: Calculate the convolution: Y (i)
q ← Y

(i)
q + Y

(i)
µk

;
where µk ∈ U, s.t. min ||Cj − µk||2

8: end for
9: end for

Output: Feature maps of L through convolution filters F : Y =
{Y1, Y2, ..., YN} with size H ′ ×W ′.

Moreover, feature maps of those DCT bases can be quickly
calculated by using Eq. 37, and the complexity of a d× d DCT is
only O(d2 log d) [1]. Thus the complexity for calculating feature
maps of DCT bases is O(d2 log d), and the complexity of Eq. 35
is reduced to

O((d2 log d+MN)H ′W ′). (40)

Furthermore, if the compressed residual data of convolution filters
R is sufficiently sparse, the complexity can be rewritten as

O((d2 log d+
N∑
i=1

||R||0)H ′W ′). (41)

It is important to note that the complexity of Eq. 41 would
be significantly smaller than the original complexity given∑N
i=1 ||R||0 � MN . We can simplify it as

∑N
i=1 ||R||0 =

δMN , where δ is a small value (e.g., δ = 0.05) denoting the
sparse degree of the compressed CNN. A stronger sparseness
penalty would encourage δ to be smaller.

Moreover, we will need to calculate the feature maps of cluster
centers. Since U has been obtained over all convolution filters
in different layers in a network, if the convolution filters in a
layer correspond to only K ′ centers (where K ′ ≤ K), additional
computational cost will be saved in this layer thus the complexity
can be written as

O((d2 log d+
K′∑
k=1

||U ′k||0)H ′W ′) =

O((d2 log d+ ηMK ′)H ′W ′),

(42)

where η is similar to δ and denotes the sparse degree of cluster
centers U ′ for this layer. Since we only need to calculate the fea-
ture maps of DCT bases once, the complexity of our proposition
is

O((d2 log d+ ηMK ′ + δMN)H ′W ′), (43)

which is smaller than that (O(d2NH ′W ′)) of the original convo-
lutions when η and δ are both� 1.

According to Proposition 1, the proposed compression scheme
in the DCT frequency domain can improve the speed of CNNs
significantly due to both η and δ are extremely small after
removing redundancies. Compared to the original CNN, for a
convolutional layer, the speed-up of Alg. 1 is

rs =
d2NH ′W ′

(d2 log d+ ηK ′M + δNM)H ′W ′
≈ N

ηK ′ + δN
.

(44)
Obviously, the speed-up ratio of the proposed method is directly
relevant to η and δ, which correspond to λ (Eq. 8), λ1 and
λ2 (Eq. 19). Alg. 3 summarizes the detailed procedures of the
proposed scheme for calculating feature maps of a convolutional
layer. By the way, the fast Fourier transform (FFT) also be
studied for speeding up CNNs [39], [54], wherein, the convolution
theorem was utilized for calculating convolutions. But Fourier
coefficients are imaginary numbers which are not conductive for
compressing and the feature maps calculated in the frequency do-
main need to be converted into the spatial domain for subsequent
operations such as pooling and ReLu.

6 EXPERIMENTAL RESULTS

Baselines and Models. We compared the proposed algorithms
with several baseline approaches: Perforation [16], P+QH (Prun-
ing + Quantization and Huffman encoding) [19], SVD [13],
XNOR-Net [36], and LCNN [3]. The evaluation was conducted
using the MNIST and ILSVRC2012 datasets. We evaluated the
proposed compression approach over four widely used CNNs:
LeNet [31], [47], AlexNet [29], VGG-16 Net [41], ResNet-
50 [23], and ResNeXt-50 (32 × 4d) [53]. All methods were
implemented using MatConvNet [47] and run on K40 graphics
cards. Model parameters were stored and updated as 32 bit
floating-point values.

Impact of parameters. As discussed above, the proposed
compression method has several important parameters: λ, d, K,
b, and Ω. We first tested their impact on the network accuracy of
a LeNet by conducting an experiment using MNIST [47], where
the network has two convolutional layers and two fully-connected
layers of sizes 5×5×1×20, 5×5×20×50, 4×4×50×500,
and 1× 1× 500× 10, respectively. The original model accuracy
was 99.06%. The compression results of different λ and d after
fine-tuning are shown in Fig. 3, wherein, k was set as 16, b was
equal to +∞ since it did not make an obvious contribution to the
compression ratio even when set at a relatively smaller value (e.g.,
b = 0.05) but caused the accuracy reduction. Ω was set to 500,
making the average length of weights in the frequency domain
about 6, a bit larger than that in [19] but more flexible and with
relatively better performance. Note that all the training parameters
used their default settings, such as epochs, learning rates, etc.

It can be seen from Fig. 3 that although a lower d slightly
improves the compression ratio and speed-up ratio simultaneously,
this comes at a cost of decreased overall network accuracy; thus,
we kept d = max{di}, ∀ i = 1, ..., p, in CNNpack. Overall, λ
is clearly the most important parameter in the proposed scheme,
which is sensitive but monotonous. Thus, it only needs to be
adjusted according to demand and restrictions. Furthermore, we
tested the impact of number of cluster centers K. As mentioned
above, K is special in that its impact on performance is not intu-
itive. When K becomes larger, E becomes sparser but more space
is required for storing cluster centers U and indexes. Fig. 4 shows

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

0.980

0.984

0.988

0.992

0.025 0.035 0.045 0.055

A
cc

ur
ac

y

λ

d
- = 5
d
- = 4
d
- = 3

20

40

60

80

0.025 0.035 0.045 0.055

C
om

pr
es

si
on

 r
at

io

λ

d
- = 5
d
- = 4
d
- = 3

5

10

15

20

25

0.025 0.035 0.045 0.055

S
pe

ed
up

 r
at

io

λ

d
- = 5
d
- = 4
d
- = 3

Fig. 3: The performance of the proposed approach with different λ and d.

0.986

0.988

0.990

0.992

0.025 0.035 0.045 0.055

A
cc

ur
ac

y

λ

K = 16
K = 64

K = 128
K = 0

20

40

60

80

0.025 0.035 0.045 0.055

C
om

pr
es

si
on

 r
at

io

λ

K = 16
K = 64

K = 128
K = 0

5

10

15

20

0.025 0.035 0.045 0.055

S
pe

ed
up

 r
at

io

λ

K = 16
K = 64

K = 128
K = 0

Fig. 4: The performance of the proposed approach with different numbers of cluster centers K.

that K = 16 provides the best trade-off between compression
performance and accuracy.

79.82 87.17 92.20 95.31 97.21 98.28

Pruned proportion (%)

0.988

0.990

0.992

A
c
c
u

ra
c
y

Data free Data driven

Fig. 5: Comparison between data-free and data-driven methods by
pruning different proportions of weights on MNIST.

We also report the compression results by directly compressing
the DCT frequency coefficients of original filters C as before (i.e.,
K = 0, the black line in Fig. 4). It can be seen that the clustering
number does not affect accuracy, but a suitable K does enhance
the compression ratio. Another interesting phenomenon is that the
speed-up ratio without decomposition is larger than that of the
proposed scheme because the network is extremely small and the
clustering introduces additional computational cost as shown in
Eq. 44. However, recent networks contain a lot more filters in
a convolutional layer, larger than K = 16. Based on the above
analysis, we kept λ = 0.04 and K = 16 for this network (an
accuracy of 99.14%). Accordingly, the compression ratio rc =
32.05× and speed-up ratio rs = 8.34×, which is the best trade-
off between accuracy and compression performance.

Data-free v.s. Data-driven. In addition, a data-driven method
for compressing CNNs has been proposed in Alg. 2, which can
provide a more accurate guidance for removing redundant weights
in CNNs. In order to illustrate its superiority, we compared its
performance with that of the original data-free method by ranging
the pruned proportion of all weights in the network as shown in
Fig. 5.

As can be found in Fig. 5, the data-driven method can hold a
higher accuracy when pruning similar amounts of weights in the
network. Although the data-driven method needs more computa-
tion times for learning the sparse network in the frequency domain,
but these are off-line computations. As a result, we obtained a
35.42× compression ratio with an accuracy of 99.15%, which is
about 2× higher than that of the data-free method. The speed-up
ratio of the new method is 8.59×, which is also higher than that
of the data-free method.

Extensive ablation experiments. The proposed CNNpack
algorithm consists of several essential components, (i.e., (s1) DCT
transformation, (s2) k-means clustering, (s3) `1-regularization,
(s4) quantization, (s5) Huffman coding, and (s6) CSR format,
as shown in the top line in Fig. 2. Wherein, the influence of s2
has been fully investigated in Fig. 4, and the number of cluster
centers was set as K = 16 for an appropriate trade-off between
compression and speed-up performance. In fact, independently
exploiting s1 has no influence on the compression, since DCT
is a lossless and linear transform; s3 and s6 have to be considered
together since CSR is only effective for sparse data; and s4 is
usually launched before s5 for the convenience of coding. Hence,
we proceed to evaluate the performance of Comb-1 (s1, s2, s3,
and s6) and Comb-2 (s1, s2, s4, and s5) on the MNIST dataset.

TABLE 1: Comparison between combinations of different compo-
nents in the proposed algorithm.

Performance Comb-1 Comb-2 CNNpack
rc 13.45× 5.32× 35.42×
rs 8.59× 1× 8.59×

It can be found in Tab. 1 that, the speed-up benefit of the
proposed CNNpack was obtained from Comb 1, because of
the acceleration of multiplications using sparse DCT frequency
coefficients of compressed filters by Eq. 34. In addition, given the
sparse representation and the CSR format, Comb1 brought in a
13.45× compression ratio. Obviously, the proposed CNNpack can

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

1 10 20 30 40 54

Layer

0

2

4

6

8

M
e
m

o
ry

 (
M

B
)

Original Net Compressed Net

(a) Compression ratios of all convolutional layers.

1 10 20 30 40 54

Layer

0

5

10

15

M
u
lt
ip

lic
a
ti
o
n

10
7

Original Net Compressed Net

(b) Speed-up ratios of all convolutional layers.

Fig. 6: Compression statistics for ResNet-50 (better viewed in color version).

achieve a higher compression ratio by combining the quantization
and Huffman encoding in Comb 2.

Filter visualization. The proposed algorithm operates in the
frequency domain. Though we do not need to transform the
compressed net back into the spatial domain when calculating
convolutions, we reconstruct the convolution filters in the spatial
domain for a more intuitive visualization. Reconstructed convolu-
tion filters are obtained from the LeNet on MNIST, as shown in
Fig. 7.

Fig. 7: Visualization of example filters learned on MNIST: (a) the
original convolution filters, (b) filters after pruning, (c) convolution
filters compressed by the proposed algorithm.

The proposed approach is fundamentally different to the pre-
viously used pruning algorithm. According to Fig. 7(b), weights
with smaller magnitudes are pruned while influences of larger
weights have been discarded. In contrast, our proposed algorithm
not only handles the smaller weights but also considers impacts of
those larger weights. Most importantly, we accomplish the com-
pressing task by exploring the underlying connections between all
the weights in the convolution filter (see Fig. 7(c)).

Compression CNNs on ImageNet. We next employed CN-
Npack for CNN compression on the ImageNet ILSVRC-2012
dataset [40], which contains over 1.2M training images and 50k
validation images. First, we examined two conventional models:
AlexNet [29], with over 61M parameters and a top-5 accuracy of
80.8%; and VGG-16 Net, which is much larger than the AlexNet
with over 138M parameters and has a top-5 accuracy of 90.1%.
Table 2 shows detailed compression and speed-up ratios of the
AlexNet with K = 16. The result of the VGG-16 Net with the
same setting can be found in Table 3. The reported multiplications

are for computing one image.

TABLE 2: Compression statistics for AlexNet.

Layer Memory rc Multiplication rs

conv1 0.13MB 868× 1.05× 108 110×
conv2 1.17MB 124× 2.23× 108 30×
conv3 3.37MB 949× 1.49× 108 29×
conv4 2.53MB 65× 1.12× 108 18×
conv5 1.68MB 60× 0.74× 108 13×

fc6 144MB 358× 0.37× 108 216×
fc7 64MB 16× 0.16× 108 8×
fc8 15.62MB 121× 0.04× 108 60×

Total 232.52MB 43.5× 7.24× 108 26.2×

TABLE 3: Compression statistics for VGG-16 Net.

Layer Memory rc Multiplication rs

conv1 1 0.006MB 302× 0.11×109 35×
conv1 2 0.14MB 28× 2.41×109 8×
conv2 1 0.28MB 15× 1.20×109 6×
conv2 2 0.56MB 16× 2.41×109 7×
conv3 1 1.12MB 18× 1.20×109 9×
conv3 2 2.25MB 16× 2.41×109 8×
conv3 3 2.25MB 32× 2.41×109 14×
conv4 1 4.5MB 14× 1.20×109 8×
conv4 2 9MB 47× 2.41×109 24×
conv4 3 9MB 54× 2.41×109 27×
conv5 1 9MB 9× 0.60×109 6×
conv5 2 9MB 14× 0.60×109 9×
conv5 3 9MB 25× 0.60×109 15×

fc6 392MB 270× 0.41×109 201×
fc7 64MB 15× 0.16×108 8×
fc8 15.62MB 215× 0.41×107 120×

Total 572.74MB 49.1× 2.04× 1010 10.2×

We achieved a 43.5× compression ratio and a 49.1× compres-
sion ratio for AlexNet and VGG-16 Net, respectively. In contrast,
compression ratios of the data-free method for these two networks
are 39.3× and 46.2×, respectively. The layer with a relatively
larger filter size has a larger compression ratio because it contains
more subtle high-frequency coefficients. In contrast, the highest
speed-up ratio is often obtained on the layer whose filter number
N was much larger than its filter size, e.g., the fc6 layer of
AlexNet. We only obtained a 10.2× speed-up ratio on VGG-16

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

1 10 20 30 40 54

Layer

0

2

4

6

8

M
e
m

o
ry

 (
M

B
)

Original Net Compressed Net

(a) Compression ratios of all convolutional layers.

1 10 20 30 40 54

Layer

0

0.5

1

1.5

2

2.5

M
u
lt
ip

lic
a
ti
o
n

10
8

Original Net Compressed Net

(b) Speed-up ratios of all convolutional layers.

Fig. 8: Compression statistics for ResNeXt-50 (32 × 4d) (better viewed in color version).

Net because the layer complexity is relevant to the feature map size
and the first several layers definitely have more multiplications.
Unfortunately, their filter numbers are relatively small and their
compression ratios are all small, thus the overall speed-up ratio is
lower than that on AlexNet. Accordingly, when we set K = 0,
the compression ratio and the speed-up ratio of AlexNet were
35× and 22× and those of VGG-16 Net were 28× and 7.05×.
This reduction is because that these two networks are relatively
large and contain many similar filters. Moreover, the filter number
in each layer is larger than the number of cluster centers, i.e.,
N > K. Thus, cluster centers can effectively reduce memory
consumption and computational complexity simultaneously.

ResNet-50 and ResNeXt-50 on ImageNet. Here we discuss
a more recent work, ResNet-50 [23], which has more than 150
layers and 54 convolutional layers. This model achieves a top-
5 accuracy of 7.71% and a top-1 accuracy of 24.62% with only
about 95MB parameters [47]. Moreover, since this model adopts
small filters with sizes 1 × 1, 3 × 3, and 7 × 7, it is harder to
launch compression on the ResNet-50 compared with traditional
AlexNet and VGGNet.

For the experiment on ResNet-50, we set K = 0 since the
functionality of quantization (Eq. 11) for 1-dimensional filters
is similar to that of k-means clustering, and cluster centers are
dispensable for these models. We obtained a 7.8% top-5 accuracy
on the ResNet-50. Fig. 6 shows detailed compression statistics
of ResNet-50 utilizing the proposed CNNpack and CNNpack v2
(the proposed data-driven method as detailed Alg. 2). In summary,
memory usage for storing filters of the ResNet-50 was squeezed
by a factor of 14.0×, and the speed-up ratio for this network is
about 5.0×.

Compared with results on AlexNet and VGGNet-16, compres-
sion and speed-up ratios on the ResNet-50 are obviously lower
since the ResNet-50 has a more compact architecture by utilizing
convolution filters with small sizes, i.e., 7× 7, 3× 3, and 1× 1.
Although modern CNNs adopt small filters, they still have a lot of
convolutional layers with larger filters of sizes 7 × 7 and 3 × 3,
which accounts for more than half proportion of those of whole
networks (e.g., ResNet [23] and ResNeXt [53]). Therefore, it is

reasonable to compress CNNs in the DCT frequency domain, as
discussed in Fig. 1.

TABLE 4: Compression statistics for ResNets.

Model Evaluation Original CNNpack CNNpack v2

ResNet-50
[23]

rc 1 12.3× 14.0×
rs 1 4.4× 5.0×

top-1 err 24.6% 24.8% 24.7%
top-5 err 7.7% 7.8% 7.8%

ResNeXt-50
[53]

rc 1 12.6× 14.3×
rs 1 4.5× 5.1×

top-1 err 22.6% 23.8% 23.6%
top-5 err 6.5% 6.9% 6.8%

In addition, we also tested the performance of the proposed
CNNpack on the ResNeXt-50 [53] which enhances ResNet-50
by dividing conventional convolutional layers into a set of small
layers. This model achieves a top-5 accuracy of 6.52% and a top-
1 accuracy of 22.67% with a similar architecture and number of
weights to those of the original ResNet-50. After applying the
proposed compression scheme, we obtained a 14.3× compres-
sion ratio and a 5.1× speed-up ratio on the ResNeXt-50, and
detailed compression statistics on this network are also shown in
Fig. 8. Tab. 4 summarizes compression results on ResNet-50 and
ResNeXt-50, respectively. It is clear that the proposed CNNpack is
applicable to this recent network with compact architecture, since
there are still many 3× 3 convolution filters in this model.

Comparison with state-of-the-art methods. We detail a
comparison with state-of-the-art methods for compressing CNNs
in Tab. 5. CNNpack clearly achieves the best performance in terms
of both the compression ratio (rc) and the speed-up ratio (rs). Note
that although Pruning+QH achieves a similar compression ratio to
the proposed method, the data in their algorithm is stored after
applying encoding, which means that filters have to be decoded
before any calculation. Hence, the compression ratio of P+QH will
be lower than that reported in [19] if we only consider memory
usage. In contrast, the compressed data produced by our method
can be directly used for network calculation. In reality, online
memory usage is the real restriction for mobile devices, and the
proposed method is superior to previous works in terms of both

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

TABLE 5: An overall comparison of state-of-the-art methods for deep neural network compression and speed-up on the ILSVRC2012
dataset, where rc is the compression ratio and rs is the speed-up.

Model Evaluation Original Perforation [16] P+QH [19] SVD [13] XNOR [36] LCNN [3] CNNpack CNNpack v2

AlexNet [29]

rc 1 1.7× 35× 5× 32× - 39.3× 43.5×
rs 1 2× - 2× 8× 37.6× 25.1× 26.2×

top-1 err 41.8% 44.7% 42.7% 44.0% 56.8% 55.7% 41.6% 41.9%
top-5 err 19.2% - 19.7% 20.5% 31.8% 31.3% 19.2% 19.3%

VGGNet-16 [41]

rc 1 1.7× 49× - - - 46.2× 49.1×
rs 1 1.9× 3.5× - - - 9.4× 10.2×

top-1 err 28.5% 31.0% 31.1% - - - 29.7% 29.4%
top-5 err 9.9% - 10.9% - - - 10.4% 10.2%

the compression ratio and the speed-up ratio.
Running time. We reported CNN runtimes before and after

applying the proposed method in Tab. 6. Original and compressed
models were both launched using MatConvNet [47] and NVIDIA
K40 cards. It can be seen that the running time of compressed
model was significantly reduced. The practical speed-up ratio was
slightly lower than the theoretical speed-up ratio rs due to costs
incurred by data transmission, pooling, padding, etc.

TABLE 6: Running time of different networks per image.

Time Original Compressed speed-up
AlexNet 1.82 ms 0.09 ms 20.5×

VGGNet-16 16.67 ms 2.34 ms 7.1×
ResNet-50 9.03 ms 2.89ms 3.1×

ResNeXt-50 9.56 ms 3.27ms 2.9×

7 CONCLUSION

Neural network compression techniques are desirable so that
CNNs can be used on mobile devices. Therefore, here we present
an effective compression scheme in the DCT frequency domain,
namely, CNNpack. Compared to state-of-the-art methods, we
tackle this issue in the frequency domain, which can offer the
probability for more compression ratio and speed-up. Moreover,
we no longer independently consider each weight since each
frequency coefficients calculation involves all weights in the
spatial domain. Following the proposed compression approach,
we explore a much cheaper convolution calculation based on
the sparsity of the compressed net in the frequency domain.
Although the compressed network produced by our approach is
sparse in the frequency domain, the compressed model has the
same functionality as the original network since filters in the
spatial domain have preserved intrinsic structure. In addition, we
extended the proposed method into a data-driven method, which
allows us to discard more useless weights in deep models. Our
experiments show that the compression ratio and the speed-up
ratio are both higher than those of state-of-the-art methods. The
proposed CNNpack approach creates a bridge to link traditional
signal and image compression with CNN compression theory,
allowing us to further explore CNN approaches in the frequency
domain.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Founda-
tion of China under Grant NSFC 61375026 and 2015BAF15B00,
and Australian Research Council Projects: FT-130101457, DP-
140102164, LP-150100671.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform.
Computers, IEEE Transactions on, 100(1):90–93, 1974.

[2] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds for learning
some deep representations. ICML, 2014.

[3] H. Bagherinezhad, M. Rastegari, and A. Farhadi. Lcnn: Lookup-based
convolutional neural network. In CVPR, 2017.

[4] N. Bell and M. Garland. Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis,
2009.

[5] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE TPAMI, 35(8):1798–1828, 2013.

[6] E. J. Candès and B. Recht. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):717–772,
2009.

[7] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and
Y. Chen. Compressing convolutional neural networks. arXiv preprint
arXiv:1506.04449, 2015.

[8] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In ICML, 2015.

[9] Y.-N. Chen, C.-C. Han, C.-T. Wang, B.-S. Jeng, and K.-C. Fan. A
cnn-based face detector with a simple feature map and a coarse-to-fine
classifier-withdrawn. IEEE TPAMI, 2009.

[10] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks
with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[11] M. Courbariaux, Y. Bengio, and J.-P. B. David. Training deep neural
networks with binary weights during propagations. arXiv preprint
arXiv:1511.00363, 2015.

[12] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting parameters
in deep learning. In NIPS, 2013.

[13] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation. In
NIPS, 2014.

[14] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using
deep convolutional networks. IEEE TPAMI, 38(2):295–307, 2016.

[15] J. Feng, H. Xu, and S. Yan. Online robust pca via stochastic optimization.
In NIPS, 2013.

[16] M. Figurnov, D. Vetrov, and P. Kohli. Perforatedcnns: Acceleration
through elimination of redundant convolutions. NIPS, 2016.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In CVPR, 2014.

[18] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep
convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115, 2014.

[19] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
In ICLR, 2016.

[20] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and
connections for efficient neural network. In NIPS, 2015.

[21] S. J. Hanson and L. Pratt. Comparing biases for minimal network
construction with back-propagation. In NIPS, 1989.

[22] B. Hassibi and D. G. Stork. Second order derivatives for network
pruning: optimal brain surgeon. In NIPs, 1993.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

[24] D. A. Huffman et al. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[25] K. Hwang and W. Sung. Fixed-point feedforward deep neural network
design using weights+ 1, 0, and- 1. In IEEE Workshop on Signal
Processing Systems, 2014.

[26] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional
neural networks with low rank expansions. In BMVC, 2014.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2857824, IEEE
Transactions on Pattern Analysis and Machine Intelligence

A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[27] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for
human action recognition. IEEE TPAMI, 35(1):221–231, 2013.

[28] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression
of deep convolutional neural networks for fast and low power mobile
applications. In ICLR, 2016.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, 2012.

[30] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky. Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. In ICLR, 2015.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[32] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier
method for exact recovery of corrupted low-rank matrices. arXiv preprint
arXiv:1009.5055, 2010.

[33] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse
convolutional neural networks. In CVPR, 2015.

[34] A. Mahendran and A. Vedaldi. Visualizing deep convolutional neural
networks using natural pre-images. IJCV, pages 1–23, 2016.

[35] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning
for sparse coding. In ICML, 2009.

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. arXiv
preprint arXiv:1603.05279, 2016.

[37] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NIPS, 2015.

[38] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun. Object detection
networks on convolutional feature maps. IEEE TPAMI, 2016.

[39] O. Rippel, J. Snoek, and R. P. Adams. Spectral representations for
convolutional neural networks. In NIPS, 2015.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 115(3):211–252, 2015.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. ICLR, 2015.

[42] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representa-
tion by joint identification-verification. In NIPS, 2014.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

[45] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. IEEE
transactions on pattern analysis and machine intelligence, 30(11):1958–
1970, 2008.

[46] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural
networks on cpus. In Deep Learning and Unsupervised Feature Learning
Workshop, NIPS, 2011.

[47] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks
for matlab. In Proceedings of the 23rd Annual ACM Conference on
Multimedia Conference, 2015.

[48] G. K. Wallace. The jpeg still picture compression standard. Consumer
Electronics, IEEE Transactions on, 38(1):xviii–xxxiv, 1992.

[49] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization
of neural networks using dropconnect. In ICML, 2013.

[50] Y. Wang, C. Xu, S. You, D. Tao, and C. Xu. Cnnpack: Packing
convolutional neural networks in the frequency domain. In NIPS, 2016.

[51] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan.
Hcp: A flexible cnn framework for multi-label image classification. IEEE
TPAMI, 38(9):1901–1907, 2016.

[52] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured
sparsity in deep neural networks. In NIPS, 2016.

[53] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual
transformations for deep neural networks. In CVPR, 2017.

[54] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural network
for image deconvolution. In NIPS, 2014.

[55] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In ECCV, 2014.

Yunhe Wang received the B.E degree from Xi-
dian University in 2013. Currently, he is a Ph.D.
candidate with the Key Laboratory of Machine
Perception (Ministry of Education) in the Peking
University. His research interests lie primarily in
machine learning and computer vision.

Chang Xu received the B.E. degree from Tianjin
University, China, and the Ph.D. degree from
Peking University, China. He is currently a Lec-
turer with the School of Information Technologies
and the Faculty of Engineering and Information
Technologies in the University of Sydney. His
research interests lie primarily in machine learn-
ing, multimedia search and computer vision.

Chao Xu received the B.E. degree from Ts-
inghua University in 1988, the M.S. degree from
University of Science and Technology of China in
1991 and the Ph.D degree from Institute of Elec-
tronics, Chinese Academy of Sciences in 1997.
Between 1991 and 1994 he was employed as
an assistant professor by University of Science
and Technology of China. Since 1997 Dr. Xu has
been with School of EECS at Peking University
where he is currently a Professor. His research
interests are in image and video coding, pro-

cessing and understanding. He has authored or co-authored more than
80 publications and 5 patents in these fields.

Dacheng Tao (F’15) is Professor of Computer
Science and ARC Future Fellow in the School
of Information Technologies and the Faculty of
Engineering and Information Technologies, and
the Founding Director of the UBTech Sydney
Artificial Intelligence Centre at the University of
Sydney. He was Professor of Computer Science
and Director of Centre for Artificial Intelligence in
the University of Technology Sydney. He mainly
applies statistics and mathematics to Artificial
Intelligence and Data Science. His research in-

terests spread across computer vision, data science, image processing,
machine learning, and video surveillance. His research results have
expounded in one monograph and 500+ publications at prestigious
journals and prominent conferences, such as IEEE T-PAMI, T-NNLS,
T-IP, JMLR, IJCV, NIPS, CIKM, ICML, CVPR, ICCV, ECCV, AISTATS,
ICDM; and ACM SIGKDD, with several best paper awards, such as the
best theory/algorithm paper runner up award in IEEE ICDM’07, the best
student paper award in IEEE ICDM’13, and the 2014 ICDM 10-year
highest-impact paper award. He received the 2015 Australian Scopus-
Eureka Prize, the 2015 ACS Gold Disruptor Award and the 2015 UTS
Vice-Chancellor’s Medal for Exceptional Research. He is a Fellow of the
IEEE, OSA, IAPR and SPIE.

